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PREFACE TO THE THIRD EDITION.
r ‘

That a third edition of this book is called fo? in less than live

years from its first publication is gratifying to author and pub-

lishers alike. It indicates the growing" attention given to the

subject both in this country and abroad by teachers and students

of economic and vital statistics, as well as by biologists and others

interested in the physical sciences, afid it suggests that the

theoretical treatment of statistical methods is increasingly recog-

nised to be of practical value.

Unfortunately, thorough revision is at present impossible, as

duties connected^with the war claim most of my time and energy,

but such minor alterations and additions ..as seemed essential
m

have been made, and the lists of references have been brought up

to date as far as possible by the inclusion of papers published

since the issue of the second edition. If omissions have occurred,

I must plead my absence from books and papers at Cambridge

as the excuse. I hope that the work as now revised will continue

to be of service to students until the recurrence of more normal

times shall render fuller revision possible.

^ G. U. Y.

December 1915.

a * •

PUBLISHERS’ NOTE TO FOURTH EDITION.

That the hope expressed in the concluding paragraph of the

Preface to the Third Edition has been fulfilled is proved by the

call for another edition in so short a time. > With the distractions

of the War still acute, no further revision has been possible.



PREFACE TO THE SECOND EDITION.

It was evident to any observer during recent years that the

interest taken in the theory of statistics was rapidlyfincreasing

;

nevertheless, it has been an unexpected gratification to find that

students of the subject were so numerous as to •require a second

edition of the ^present book in less than twelve months from

publication. The opportunity has been taken to recast certain

paragraphs in which the wording appeared to be ambiguous, and

such errors as were noted in the first edition have been corrected.

The references and exercises at the ends of the
#
several chapters

have also been revised, and a substantial addition has been made

to Chapter X. in the form of a section on the correlation-ratio.

Many reviews have been most kind and suggestive, and I am

glad to avail myself of this early opportunity of thanking re-

viewers, friends, and correspondents who have assisted me by

their suggestions or by directing my attention to errors. I hope

that the same assistance will be continued.

February 1012.

G. U. Y.



PREFACE TO THE FIRST EDITION.

The following chapters are based on the courses of instruction

given during my tenure of the Newmarch Lectureship in Statistics

at University College, London, in the sessions 1902-1909. The

variety of illustrations and examples has, however, been increased

to render the book more suitable for the use of biologists and

others besides those interested in economic and* vital statistics,

and some of the more difficult parts of the subject have been

treated in greater detail than was possible in a sessional course

of some thirty lectures. For the rest, the chapters follow closely

the arrangement of the course, the three parts into which the

volume is divided corresponding approximately to the work of

the three terms. To enable the student to proceed further with

the subject, fairly detailed lists of references to the original

memoirs have been given at the end of each chapter : exercises

have also been added for the benefit, more especially, of the

student who is working without the assistance of a teacher.

The volume represents an attempt to work "out a systematic

introductory course on statistical methods—the methods available

for discussing, as distinct from collecting, statistical data—suited

to those who possess only a limited knowledge of mathematics :

an acquaintance with algebra up to the binomial theorem,

together with such elements of co-ordinate geometry as are now

generally included therewith, is all that is assumed. I hope that

it may prove of some service to the students of the diverse

sciences in which statistical methods are now employed.

My most grateful thanks are due to Mr R. H. Hooker not only
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tor reading the greater part of the manuscript, and the proofs,

and for making many criticisms, and suggestions which have

been of the greatest service, but also for much friendly help and

encouragement without which the preparation of the volume,

often delayed and interrupted by the pressure of other work,

might never have been completed: my debt to Mr Hooker is

indeed greater than can well be expressed in a formal preface.

My thanks are also due to Mr H. D. Vigor for some assistance*

in checking the arithmetic, and my acknowledgments to Professor

Edgeworth for the example used in §5 of Chap. XVII. to illustrate

the influence of the form of the frequency distribution on the

probable error of the median.

1 can hardly hope that all errors in the text or in the mass

of arithmetic involved in examples and exercises Jaave been

eliminated, and will feel indebted to any reader w|io directs

my attention to any such mistakes, or to any
#
omissions, am-

biguities, or obscurities.

* G.U.Y.

December 1910.
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THEORY OP STATISTICS.

INTEODUCTION.

1 3. The introduction of the terms “ statistics/’ statistical,” into the English
language—4-6. The change in meaning of these terms during the
nineteenth century— 7-9. The present use of the terms— 10. Defini-

tions of “statistics,” “statistical method^,” “theory of statistics,” in

accordance with present usage.

1. The words “statist,”, “statistics,” “statistical,” appear to be

all derived, nfore or less indirectly, from the Latin status, in the

sense that it«acquired in mediaeval Latin of a political state .

2. The first terip. is, however, of much earlier date than the two
others. The word “statist” is found, for instance, in Hamlet

(1602), 1 Cymbeline (1610 or 1611), 2 and in ParMise Regained

(1671). 8 The earliest occurrence of the word “statistics” yet

noted is in The Elements of Universal Erudition, by Baron J. F.

von Bielfeld, translated by W. Hooper, M.D. (3 vols., London, 1770).

One of its chapters is entitled Statistics
,
and contains a definition

of the subject as “The science that teaches us what is the politi-

cal arrangement of all the modern states of the known world.” 4

“Statistics” occurs again with a rather wider definition in the

preface to A Political Survey of the Present State of Europe

,

by
E. A. W. Zirnmermann, 6 issued in 1787. “It is about forty

years ago,” says Zirnmermann, “that that branch of political

knowledge, which has for its object the actual and relative

pov#,T of the several modern states, the power arising from tl^ir

natural advantages, the industry and civilisation of their inhabit

ants, and the wisdom of their governments, has been formed, chiefly

by German writers, into a separate science. ... By the more con-

venient form it has now received . . . . this science, distinguished

by the new-coined name of statistics, is become a favourite study

in Germany” (p. ii); and the adjective is also given (p. v), “To
the several articles contained in this work, some respectable

1 Aelv., sc. 2.
2 Act ii., sc. 4.

:i Bk. iv.

4
I cite from Dr W, F. Willcox, Quarterly 'Publications of the American

Statistical Association
,
vol. xiv.

, 1914, p. 287.
3 Zimmemiarm’s work appears to have been written in English, though he

was a German, Professor of Natural Philosophy at Brunswick.
• t
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statistical writers have added a view, of the principal epochas of the

history of each country

3. Within the next few years the words were adopted by several

writers, notably by Sir John Sinclair, the editor and organiser of the

first Statistical Accountof Scotlm^ 1 to whom, indeed, their intro--*

duction has been frequently ascribed. In the circular letter to the

Clergy of the Church '-of. Scotland issued in May 1790,2 he state#,

that -in Germany “
‘ Statistical Inquiries,’ as they are called, have

been carried to a very great extent,” and adds an explanatory

footnote to the phrase “Statistical Inquiries”—“or inquiries

respecting the population, the political circumstances, the pro-

ductions of a country, and other matters of state.” In the

“History of the Origiij and Progress” 3 of the work, he tells us,

“ Many people were at first surprised at my using the new words,

Statistics and Statistical
,
as it was supposed that some term in our

own language might have expressed the. same meaning. But in

the course of a very extensive tour, through the northern; parts of

Europe, which I happened to take in 1786, I %md that in

Germany they were engaged in a species of
#
political enquiry,

to which they had given the name of 'Statistics
;
4

. . . . as 1

thought thaf a new word might attract more public attention,

I resolved on adopting it, and I hope that it is now completely

naturalised and incorporated with our language.” This hope

was certainly justified, but the meaning of the word underwent
rapid development during the half century or so following its

introduction.

4. “Statistics” (statistik), as the term is used by German
writers of the eighteenth century, by Zimmermann and by Sir

®Tohn Sinclair, meant simply the exposition of the noteworthy
characteristics of a state, the mode of exposition being—almost
inevitably atUiat time—preponderantly verbal. The conciseness

and definite character of numerical data were recognised at a
comparatively early period—more particularly by English waters
— but trustworthy figures were scarce. After the commencement
of the nineteenth century, however, the growtli of official data
was, continuous, and numerical statements, accordingly,

, began
more and more to displace the verbal descriptions of earlier days.
“ Statistics ” thus insensibly acquired a narrower signification, viz-.,

1 Twenty-one vols.
,
1791-99.

2 Statistical Account, vol. xx., Appendix to “The History of the Origin and
Progress. . . .” given at the end of the volume.

3 Zoc. cit.
y p. xiii.

4 Tiie Abuss der Statsivissenschaft der Earopaischcn Heiche (1749) of Gottfried
Achenwall. Professor of Politics at Gottingen, is the volume in which the word
u

statistik ” appears to he first employed, but the adjective “statistics”
occurs at a somewhat earlier date in works written in Latin.
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the exposition of the characteristics of a State by numerical

methods. It is difficult to say at what epoch the word came
definitely .to bear this quantitative meaning, but the transition

appears to have been only half accomplished even after the founda-

tion of the Royal Statistical Society in 1834, The articles in the

first volume of the Journal
,
issued in 1838-9, are for the most

#
part of a numerical character, but the official definition has no
reference to method. “ Statistics,” we read, “ may be said, in the

wolds of the prospectus of* this Society, to be the ascertain-

ing and bringing together of those facts which are calculated to

illustrate the., condition and prospects of society.” 1 It is, however,

admitted that “ the statist commonly prefers “to employ figures

and tabular exhibitions.” #

5. Once, however, the first change of meaning was accomplished,

further changes followed. From the name of a science or -art of

state-description by numerical methods, the word was transferred to

those series of figures with which it operated, as we speak of vital

'statistics, p®or-law statistics, and so forth. But similar data

occur in many connections
;
in meteorology, for instance, in anthro-

pology, etc. Such collections of numerical data were also termed
“statistics,” and consequently, at the present day, the word is

held to cover a collection of numerical data,, analogous to those

which were originally formed for the, study of the state, on almost

any subject whatever. We not only read of rainfall “statistics,”

but of “statistics” showing the growth of an organisation for

recording rainfall 2 We find a chapter headed “Statistics” in a

book on psychology, 3 and the author, writing of “statistics con-

cerning the mental characteristics of man,” “ statistics of children,

under the headings bright—average—dull.” 4 We are informed

that, in a book on Latin verse, the characteristics of the Virgilian

hexameter “ are examined carefully with statistics.” 5

6. The development in meaning of the adjective “statistical”

wasf naturally similar. The methods applied to the study* of

numerical data concerning the state were still termed “ statistical

methods,” even when applied to data from other sources. Thus
we read of the inheritance of.genius being treated “in a statistical

manner,” 6 and we have now “a journal for the statistical

study of biological problems.” 7 Such phrases as “ the statistical

1 Jour. Stai. Soc.> vol. i. p. 1.

- Symons5

British Rainfall for 1899, p. 15.
3 E. W. Scripture, The New. Psychology

, 1897, chap. ii.

4 Op. eit. p. 18.
5 Alhenccum, Oct. 3, 1903.
* Francis Galton, Hereditary Genius (Macmillan, 1869), preface.
7 Biometriha

,
Cambridge Univ. Pres% the first number issued in 1901.

'
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investigation of the motion of molecules” 1 have become pari- of

the ordinary language of physicists. We 'find a work entitled
4 ‘the principles of statistical mechanics,” 2 and the Bakeriau

lecture for 1909, by Sir J. Larmor, was on “the statistical and

thermodynamical relations of radiant energy.”

7. It is unnecessary to multiply such instances to show that the

words “statistics,” “statistical,” no longer bear any necessary

reference to “ matters of state.” They are applied indifferently in

physics, biology, anthropology, and ^meteorology, as well as in*the

social, sciences. Diverse though these cases are, there must be

some community of character between them, or the same terms

and the same methods would not be applied. What, then, is this

common character % *

8. Let us turn to social science, as the parent of the methods
termed “statistical,” for a moment, and consider its characteristics

as compared, say, with physics or chemistry. One characteristic

stands out so markedly that attention has betfii repeatedly

directed to it by “ statistical ” writers as. the source of the peculiar

difficulties of their science—the observer of social facts cannot ex-

periment, but must deal with circumstances as they occur
,
apart

from his control Now the object of experiment is to replace the

complex systems of causation usually occurring in nature b\r

simple systems in which only one causal circumstance is permitted

to vary at a time. This simplification being impossible, the

observer has, in general, to deal with highly complicated cases of

multiple causation—cases in which a given result may be due to

any one of a number of alternative causes or to a number of

different causes acting conjointly.

9. A little consideration will show, however, that this is also

precisely the characteristic of the observations in other fields to

which statistical methods are applied. The meteorologist, for

example, is in almost precisely the same position as the student

of^social science. He can experiment on minor points, but# the

records of the barometer, thermometer, and rain gauge have to be

treated as they stand. With the biologist, matters are in some-
what better case. He can and does apply experimental methods
to a very large extent, 'but frequently cannot approximate
closely to the experimental ideal

;
the internal circumstances of

animals and plants too easily evade complete control. Hence a

large field (notably the study of variation and heredity) is left,

in which statistical methods have either to aid or to replace the

methods of experiment. The physicist and chemist, finally,

1 Clerk Maxwell, 4‘Theory of Heat” (1871), aiid “On Boltzmann’s
Theorem” (1878), Omnb. Phil, Trans., vol. xii.

2 By J. Willard Gibbs (Macmillan, 1902). *
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stand at the other extremity of the scale. Theirs are the

sciences in which experiment has been brought to its greatest

perfection.. But even so, statistical methods still find application.

r In the first place, the methods available for eliminating the effect
*
of disturbing circumstances, though continually improved, are not,

and cannot be, absolutely perfect. The observer himself, as well

as the observing instrument, is a source of error
;
the effects of

changes of temperature, or of moisture, of pressure, draughts, vibra-

tioit, cannot be completely eliminated. Further, in the problems
of molecular physics, referred to in the last sentences of § 6,

multiplicity of causes is of the essence of the case. The motion

of an atom or of a molecule in the middle of a swarm is dependent
on that of every other atom or molecule m the swarm.

10. In the light of this discussion, we may accordingly give the

following definitions :

—

By statistics we mean quantitative data affected to a marked
extent by a multiplicity of causes.

By statistical methods we mean methods specially adapted to

the elucidation of -quantitative data affected by a multiplicity of

causes.

By theory of statistics we mean the exposition of statistical

methods.

The insertion in the first definition of some such words as “ to

a marked extent” is necessary, since the term “statistics” is not

usually applied to data, like those of the physicist, which are

affected only by a relatively small residuum of disturbing causes.

At the same time, “ statistical methods ” are applicable to all such

cases, whether the influence of many causes be large or not.
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PART I.—THE THEORY OF ATTRIBUTES.

CHAPTER I.
*

NOTATION AM) TERMINOLOGY,

1-2. Statistics attributes and statistics of variables : fundamental character
of the former—3-5. Classification by dichotomy—6-7. Notation for

single Attributes and for combinations—8. The class-frequency —9.
Positive and negative attributes, contraries—10. The order of a class—
11. The aggregate—12. The arrangement of classes by order and
aggregate—13-14. Sufficiency of the tabulation of tfctf ultimate class-

frequencies—15-17. Or, better, of. the positive class-frequencies—18.
The class-frequencies chosen in the census for tabulation of statistics

of infirmities—19. Inclusive and exclusive notations and terminologies.

1. The methods of statistics, as defined in the Introduction,

deal with quantitative data alone. The quantitative character

may, however, arise in two different ways.

In the first place, the observer may note only the presence or

absence of some attribute in a series of objects or individuals, and
count how many do or do not possess it. Thus, in a given

population, we may count the number of the blifid and seeing,

the dumb and speaking, or the insane and sane. ^ The quantitative

character, in such cases, arises solely in the counting. *
In the second place, the observer may note or measure the

actual magnitude of some variable character for each of the

objects or individuals observed. He may .record, for instance, the

ages of persons at death, the prices of different samples of a

commodity, the statures of men, the numbers of petals in flowers.

The observations in these cases are quantitative ah initio .

2. The methods applicable to the former kind of observations,

which may be termed statistics of attributes, are also applicable

to the latter, or statistics of variables. A record of statures of

men, for example, may be treated by simply counting all measure-

ments as tall that exceed a certain limit, neglecting-the magnitude

of excess or defect, and stating the numbers of tall and short (or
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more strictly not-tall) on the basis of this classification. Similarly,

the methods that are specially adapted to the treatment of

statistics of variables, making use of each value recorded, are

available to a greater extent than might at first sight seem possible

for dealing with statistics of attributes. For example, we may
treat the presence or absence of the attribute as corresponding to r

the changes of a variable which can only possess two values, say

0 and I. Or, we may assume that we have really to do with a

variable character which has been crudely classified, as suggested

above, and we may be able, by auxiliary hypotheses as to the

nature of this variable, to draw further conclusions. But the

methods and principles developed for the case in which the observer

only notes the presence 'Or absence of attributes are the simplest

and most fundamental, and are best considered first. This and

the next three chapters (Chapters I.-IV.) are accordingly devoted

to^he Theory of Attributes. €
The objects or individuals that possess the attribute, and

those that do not possess it, may be said to be members of two
distinct classes, the observer classifying the' objects or individuals

observed. In rthe simplest case, where attention is paid to one

attribute alone, only two mutually exclusive classes are formed.

If several attributes are noted, the process of classification may,
however, be continued indefinitely. Those that do and do not

possess the first attribute may be reclassified according as they do
or do not possess the second, the members of each of the sub-

classes so formed according as they do or do not possess the

third, and so on, every class being divided into two at each step.

Thus the members of the population of any district may be
classified into males and females; the members of each sex into

sane and insape
;
the insane males, sane males, insane females,

and sane females into blind and seeing. If we were dealing with

a number of peas (Pisum sativum) of different varieties, they
might be classified as tall or dwarf, with green seeds or yellow

seeds, with wrinkled seeds or round seeds, so that we would have
eight classes—tall with round green seeds, tall with round yellow

seeds, tall with wrinkled green seeds, tall with wrinkled yellow
seeds, and four similar classes of dwarf plants.

4. It may be noticed that the fact of classification does not
necessarily imply the existence of either a natural or a clearly

defined boundary between the two classes. The boundary may
be wholly arbitrary, e.g. where prices are classified as above or
below some special value, barometer readings as above or below
some particular height. The division may also be vague and
uncertain: sanity and insanity, sight and blindness, pass
into each other by such fipe gradations that judgments may
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differ as to the class in which a given individual should be
entered. The possibility of uncertainties of this kind should

always be
#
borne in mind in considering statistics of attributes:

whatever the nature of the classification, however, natural or

artificial, definite or uncertain, the final judgment must be de-

cisive
;
any one object or individual must be held either to possess

* the given attribute or not.

5. A classification of the simple kind considered, in which each
elf&s is divided into two sub-classes and no more, has been termed
by logicians classification, or, to use the more strictly applicable

term, division by dichotomy (cutting in two). The classifica-

tions of most statistics are not dichotomous, for most usually a

class is divided into more than two sub-classes, but dichotomy is

the fundamental case. In Chapter Y. the relation of dichotomy
to more elaborate (manifold, instead of twofold or dichotomous)

processes of classification, and the methods applicable to some
such cases, are dealt with briefly.

6. For theoretical purposes it is necessary to have some simple

notation for the classes formed, and for the numbers of observa-

tions assigned to each.

The capitals A, B, (7, . . . will be used to denote the several

attributes. An object or individual possessing the attribute A
will be termed simply A. The class, all the members of which

possess the attribute A, will be termed the class A. It is con-

venient to use single symbols* also to denote the absence of the

attributes A, B, G, . . We shall employ the Greek letters, a,

/5, y, . . , Thus if A represents the attribute blindness
,
a

represents sight
,

i.e. non-blindness
;

if B stands for deafness
, ft

stands for hearing. Generally “a” is equivalent to £C non-A,” or

an object or individual not possessing the attributemA ;
the class a

is equivalent to the class none of the members of which possess the

attribute A.

T. Combinations of attributes will be represented by ju&ta-

• positions of letters. Thus if, as above, A represents blindness
,
B

deafness
,
AB represents the combination blindness and deafness .

If the presence and absence of these attributes be noted, the four

classes so formed, viz. AB, A/5
,
aB, a/5, include respectively the

blind and deaf, the blind but not-deaf, the deaf but nob-blind, and
the neither blind nor deaf. If a third attribute be noted, e.g, in-

sanity, denoted say by G, the class ABC, includes those who are

at once deaf, blind, and insane
,
ABy those who are deaf and blind

but not insane, and so on.

Any letter or combination of letters like A, AB, aB, ABy, by
means of which we specify the characters of the members of a class,

may be termed a class symbol.
#
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The number of observations assigned to any class is termed,

for brevity, the frequency of the class, or the class-frequency.

Class-frequencies will be denoted by enclosing the corresponding

class-symbols in brackets* Thus—

(.-1) denotes number of A’s,

(a)
. ,, „ ft’s,

(AB) „ „ A Ifs,

(*B) „ „ affSi

(ABC) JS „ ABC's,
(aBO) ,, „ aBC's,

(jijiC) „ „ ajSC’s,

i.e. objects possessing attribute A
not ... ,, A
possessing attributes A and B

„ B but riot A
A, JB.andC

„ „ B and C but not A
,, „ C but neither A wrfB

and so on for any number of attributes. If A represent, as in

the illustration above, blindness, B deafness, G insanity, the

symbols given stand for the numbers of the blind, the notblind,

the blind and deaf
\
the deaf but not blind, the blind

, deaf and in-

sane, the deaf and insane but not blind
,
and the insane but neither

blind nor deaf respectively.

9. The attributes denoted by capitals ABC
,

. f . may he

termed positive attributes, and their contraries denote#! by Greek

letters negative attributes. If a class-symbol include only

capital letters, the class may be termed a positive class; if only

Greek letters, & negative class. Thus the classes A, AB
,
ABC

are positive classes
;
the classes a, a/3, aj3y, negative classes.

If two classes are such that every attribute in the symbol for

the one is the negative or contrary of the corresponding attribute

in the symbol for the other, they may be termed contrary classes

and their frequencies contrary frequencies
;

e.g. AB and a/3, A[3

and aB, AJ3G and aBy, are pairs of contraries.

10. The classes obtained by noting say n attributes fall into

natural groups according to the numbers of attributes used to

specify the respective classes, and these natural groups should be
borne in mind? in tabulating the class-frequencies. A class

specified by r attributes may be spoken of as a class of the rth
ord#r and its frequency as a frequency of the rth order. Thus AB,
AG, BC are classes of the second order; (A), (Aj3), (aBC),
(AByD), class-frequencies of the first, second, third, and fourth

orders respectively.

11. The classes of one and the same order fall into further

groups according to the actual attributes, specified. Thus if three

attributes A, B, C have been noted, the classes of the second order

may be specified by any one of the pairs of attributes AB, AC, or

BC (and their contraries). The series of classes or class-frequen-

cies given by any one positive class and the classes whose symbols
are derived therefrom by substituting Greek letters for one or

more of the italic capital letters in every possible way will be
termed an aggregate. Tluis (AB) (Afi) (aB) (a/3) form an aggro-
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gate of frequencies of the second order, and the twelve classes of

the ^second order which can be formed where three attributes

have been noted may be grouped into three such aggregates.
12. Class-frequencies should, in tabulating, be arranged so that

frequencies of the same order and frequencies belonging to the
same aggregate are kept together. Thus the frequencies for the

•case. of three attributes should be grouped as given below; the
whole number of observations denoted by the letter if being
reckoned as a frequency of order zero, since no attributes are

specified :

—

Order 0. N
Order 1 . M) (B) (C)

(«) (P)
'

(y)

Order 2. (AB) (AC) (BC)m ' (Ay) (By)
• (aB) (aC) (f3C)

• m (ay) (Py)

Order 3. (ABC) (aBC)
(ABy) (m

me) >>

(m (a/3y)

13. In such a complete table for the case of three attributes,

twenty-seven distinct frequencies are given :—1 of order zero,

of the first order, 12 of the second, and 8 of the third. It

is, however, in no case necessary to give such a complete

statement.

The whole number of observations must clearly be equal to the

number of d’s together with the number of as, the number of

d ?

s to the number of d 3

s that are B together with*the number of

d\s that are not B
;
and so on,

—

i.e. any class-frequency can always

be expressed in terms of class-frequencies of higher order . Thu^

—

2f= (d) -f (a) = (B) + (J3)
~ etc.

- (AB). + (A/3) + (aB) + (a/3) » etc.

(A) « {
AB) + (A/3) ~ {AG) + (Ay) = etc.

(AB) = (ABC) 4- (ABy) ~ etc.

Hence, instead of enumerating all the frequencies as under (1),

no more need be given, for the case of three attributes, than

the eight frequencies of the third order. If four attributes had
been noted it would be sufficient to give the sixteen frequencies of

the fourth order.

The classes specified by all the attributes noted in any case,

ie. classes of the nih. order in the case of n attributes, may be
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termed the ultimate classes and their frequencies the ultimate

frequencies. Hence we may say that it is never necessary
¥
to

enumerate more than the ultimate frequencies. All the others can

be obtained from these by simple addition.

Example i.—(See reference 5 at the end of the chapter.)

A number of school children were examined for the presence

or absence of certain defects of which three chief descriptions
*

were noted, A development defects, B nerve signs, 0 low

nutrition.
>

*

Given the following ultimate frequencies, find the frequencies

of the positive classes, including the whole number of obser-

vations N.
(ABC) *.57 (aBC) 78
(ABy) 281 (aBy) 670
(Aj3C) 86 (o-fiC) 65

w) 453 (ofiy) 8310

The whole number of observations N is equal tq, the grand

total: N— 10,000.

The frequency of any first-order class, e.g. (A) is given by the

total of the Mar third-order frequencies, the class-symbols for

which contain the same letter

—

(ABC) 4- (ABy) + (A/30) 4- (A/3y) = (A) = 877.

Similarly, the frequency of any second-order class, e.g. (AB), is

given by the total of the two third-order frequencies, the class-

symbols for which both contain the same pair of letters—

(ABC) 4- (ABy) = (AB) - 338.

The complete results are

—

N 10,000 (AB) 338
<A) 877 (AC) 143
\B) 1,086 (BC) 135

\C) 286 (ABC) 57

14. The number of ultimate frequencies in the general case of

n attributes, or the number of classes in an aggregate of the nth
order, is given by considering that each letter of the class-symbol

may be written in two ways (A or a, B or (3, 0 or y), and that
either way of writing one letter may be combined with either

way of writing another. Hence the whole number of ways in

which the class-symbol may be written, i.e. the number of

classes, is

—

2 x 2 x 2 2”.

*
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The ultimate frequencies form one natural set in terms of which
the

^
data are completely given, but any other set containing the

same number of algebraically independent frequencies, viz. 2n
,

may be chosen instead.
9

15. The positive class-frequencies, including under this head the

total number of observations N, form one such set. They are alge-

* braically independent
;
no one positive class-frequency can be ex-

pressed wholly in terms of the others. Their number is, moreover,

2n,%as may be readily seen from the fact that if the Greek letters

are struck out of the symbols for the ultimate classes, they become
the symbols for the positive classes, with the exception of a/3y

.... for which BF must be substituted. Otherwise the number
is made up as follows :— #

Order 0. (The whole number of observations)

Order I. (The number of attributes noted)

Order 2.

Order 3.

1

%

(Tb# number of combinations of n things 2 together) ~

ii(n - l)(?i - 2)
(Tire number of combinations of % things 3 together)

^ 9 3

and so on. But the series
*

1 4. ,

w(«~l) «(»-!)(» -2)1+ +
1.2

+
1.2.3

+ • • • •

is the binomial expansion of (l + l)
n or 2% therefore the total

number of positive classes is 2n .

16. The set of positive class-frequencies is a most convenient

one for both theoretical and practical purposes.

Compare, for instance, the two forms of statement, in terms of

the ultimate and the positive classes respectively, as given in

Example i., § 13. The latter gives directly the whole number of

observations and the totals of J.’s, B }

s, and G*\s. The former gives

none of these fundamentally important figures without the perfor-

mance of more or less lengthy additions. Further, the latter gives

the second-order frequencies
(
AB), (AG), and (BO), which are neces-

sary for discussing the relations subsisting between A, B, and 0
,
but

are only indirectly given by the frequencies of the ultimate classes.

17. The expression of any class-frequency in terms of the

positive frequencies is most easily obtained by a process of step-

by-step substitution
;
thus—
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Arithmetical work, however, should be executed from first

principles, and not by quoting formulae' like the above.
4

Example ii.—Check the work of Example i., § 13, by finding the

frequencies of the ultimate classes from the frequencies of the

positive classes.

(ABy) » (AB) - (ABC) '== 338 - 57 -281

(Al3y) * (Ay) - (ABy) - (A) - (AC) - (A By}
= 877 - 143 - 281 —453 »m -m - (A/3y)~F~ (B) - (0) + (BO) - (Apy)
« 10,000 - 1080 - 286 + 135 - 453
= 10,135 1825 .« 8310

and so on. «

18. Examples of statistics of precisely the kind now under

consideration are afforded by the census returns, of 1891 or

1901, for England and Wales, of persons suffering from different

“infirmities,” any individual who is deaf and dumb, blind or

mentally, deranged (lunatic, imbecile, or idiot) being* required to

be returned as such on the schedule. The classes chosen for

tabulation ar^ however, neither the positive nor the ultimate

classes, but the following (neglecting minor distinctions amongst,

the mentally deranged and the returns of. persons who are deaf

but not dumb) :—Dumb, blind, mentally deranged
;
dumb and

blind but not deranged
;
dumb and deranged but not blind

;

blind and deranged but not dumb-; blind, dumb, and deranged.

If, in the symbolic notation, deaf-mutism be denoted by A, blind-

ness by B, and mental derangement by C\ the class-frequencies

thus given are (A), (B), (C% (ABy), (.Af3C% (ABC) (cf.

Census of England and Wales, 1891, vol. iii., tables 15 and 16,

p. Ivii, Censvg of 1901 ,
Summary Tables, table xlix.). This set of

frequencies does not appear to possess any special advantages.

19. The symbols of our notation are, it should be remarked,

usSf in an inclusive sense, the symbol A, for example, signifying

an object or individual possessing the attribute A with or without

others. This seems to be the only natural use of the symbol,

but at least one notation has been constructed on an exclusive

basis (cf ref. 5), the symbol A denoting that the object or in-

dividual possesses the attribute A , but not B or C or Z), or what-
ever other attributes have been noted. An exclusive notation is

apt to be relatively cumbrous and also ambiguous, for the reader

cannot know what attributes a given* symbol excludes until he
has seen the whole list of attributes of which note has been
taken, and this list he must bear in mind. The statement that
the symbol A is used exclusively cannot mean, obviously, that the
object referred to possesses oyly the attribute A and no others

:* r
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whatever
;

it merely excludes the other attributes noted in the

particular investigation. Adjectives, as well as the symbols which
may represent them, are naturally used in an inclusive sense, and
care should therefore be taken, when classes are verbally described,

# that the description is complete, and states what, if anything, is

excluded as well as what is included, in the same way as our
•notation. The terminology of the English census has not, in

this respect, been quite clear. The “ Blind” includes those who
arts “ Blind and Dumb," or “ Blind, Dumb, and Lunatic,” and so

forth. But the heading “ Blind and Dumb,” in the table relating

to “combined infirmities,” is used in the sense “Blind and Dumb,
but not Lunatic or Imbecile,” etc., and so on for the others. In
the first table the headings are inclusive# in the second exclusive.
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EXERCISES.

1. (Figures from ref. (5).) The following are the numbers of boys observed

with certain classes of defects amongst a number of school-children. A.
denotes development defects

;
B, nerve signs

;
C, low nutrition.

(ABC) 149 CaBcy 204

{ABy) 73S (aBy) 1,762
171(APC) 225 . UPC)

(A By) 1,196 UPy) 21,842

Find the frequencies of the positive classes.
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2.

(Figures from ref. (5).) The following are the, frequencies of the

positive classes for the girls in the same investigation

N 23,713 (AB) 587

00 1,618 {AC) 428
* *

(£) 2,015 (BC) 335 - r-

(O 770 (ABC) 156

Find the frequencies of the ultimate classes.

3.

(Figures from Census, England and Wales, 1891, yol. iii.) Convert the

census statement as below into a statement in terms of (a) the positive,#(5)
the ultimate class-frequencies. A ~ blindness, B~ deaf-mutism, C— mental

derangement.
N 29,002,525 (ABy) 82

U) 23,467 (ApC) 380

(») 14,192 {aBG) 500

(O) *97,383 (ABC) 25

4. (Cf. Mill’s Logie, bk. iii., eh. xvii., and ref. (1).) Show that if A
occurs in a larger proportion of the cases where B is than where B is not,

then will B occur in a larger proportion of the cases where A is than where
A is not: i.6. given (AB)j(B) > {A $)/(&), show that {A B)j{A

)

> («/?.)/(«).

5. (Cf, De Morgan, Formal Logic
, p. 163, and ref. (1).) Mo.ft B'& are A%

•most B’s are C*s: find the least number of A’s that are C% i.e. the lowest

possible value of (AC).

6. Given that *

show that

(AB)~(a&), (Ap)^(aB).

7. (Cf. ref. (*2), § 9, “Case of equality of contraries.”) Given that

(ABC)= (a.Py),

2 (ABC)^(AB) + (AC) + (BO)~\K

8. Measuremenls are made on a thousand husbands and a thousand wives.
If the measurements of the husbands exceed the measurements of the wives in
SOCLcases for one measurement, in 700 cases for another, and in 660 cases for

both measurements, in how many eases will both measurements on the wife
exceed the measurements on the husband ?

and also that

show that



CHAPTER II.

CONSISTENCE.
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m
1~S. The field of observation or universe and its specification by symbols^

4. Derivation of cornnlex from sinmle relations bv snecifvintr tlm 1

4. Derivation of complex from simple relations by spec 5

_

universe—5-6. Consistence— 7-10. Conditions of consistence for one
and for two attributes—1 1-1 4. Conditions of consistence for

;

three

attributes,
.

. . v ;<

,

,

'

"
i

® •

,

•. •

.

'

-

‘
1

:u’u f '' A
L Any statistical inquiry is necessarily confined to a certain

time, space, or material. An investigation on the prevalence ^
insanity,, "for instance, may be limited to England, to England'

190Ir to English males in 1901, or even to English ffiales over

years of age in 1901, and so on. ,
.

'

, J

[jit jS For. actual work on any given subject, no term is respited f

denote the material to which the work is so confined : the bmi
are specified, and that is sufficient. But for theoretical purpose

/ some term is almost essential to avoid circumlocutions The ex

pression the universe of discourse, or simply the universe, usee

in this sense by writers on logic, may be adopted as familia

convenient.
A.,L.a!^! l

f *p 2. The universe, like any class, may be considered as specifi

, by an enumeration of the attributes common to. all ots menibe
• ^ke the illustration of § 1, those implied by the predict

male
,
over 60 years of aye, living in 1901. It rs not,IgS

general, necessary to introduce a special letter into the dag

;
symbols to denote the attributes common to all members of :i)

$ Universe. We -know that* such attributes must '.exist, and
‘x1

common symbol can be understood,
' s '

:

’iV'jt'rli^gtricfinesfe, however, the symbol ought to be written,inf

d7\denote the combination of attributes, English—male—m r

yV S VE w V A. y.4,., **•,*+.* V T V-^ WV
' O' A '7

*

,, insane English males over 60 living in 1901,

u blind
,, (< »> .

I1I1IP



18 - THKOirt «.T si IHSTII s

instead of the simpler symbols /V (A) (B) (AB). Similarly, the

gonerul relabel s . C), S Cl Chap, 1 ,
tiding W fco-dt not - the i omnum

at ri\ te of 11 he members of the universe and (C

)

consequently

Ihv total numbi r of ohsci rations A
f
dumb! in st ' i am-.;* *1- written

in the form -

m
;m

(BAB)

. (VAVf (Vk)'**(UB)-+ (Up)-- etc .
^ y

= {UA B) + (UA&) + (
UaJJ ) + { Uu(i) etc*

» (UAB) -f (UA//)

«

(BA 0
) + (IIAy) = etc.

yipSoClearly,
;

' howeyte ' we might ^ha¥e iVnsed :
. Miy; ptter

mstei d of C ro denote tht .attribute* <a mm m la .* 1' tin un inhere

of the universe, e.g. doer B or rl/i or ABC
,
writing in the latter

and so on* Hence aw/ attribute or combination of attribute*

common to all the class-symbols in an equation mag he regarded a*

specifying the universe within which the equation holds good.

Thus the equation just written may he read in words; “The,
number of objects or individuals in the universe ABC is equal to

the number of iTs . together with the number of not -//s within

the same universe;” The eq nation

M
'may be read :

a The number of A 3
s is equal to th e, number of AC

that are ' B together with, the number of ASi
;

that are . not-B
within the universe CP

'

1 4. The more complex may be derived from the simpler relations

between Tdas?~frequencies very' readily by the process of specifying

the universe . Thus starting from the simple equation

we

. («)~-Y-U),

have, ' v specifying the universe as [3,

(°fi) ~ ifl) - (Aft)

Specifying the universe, again, as y, we have

(ftjSy) -*(><)- (Ay)-(j
= JF~(A)-(J3)

By) -l- (A By) '

1

(C) + (AB) + (AG) A (BC) - (ABC),

5, Ary clas? frt pienoics which Lave teen or miuht ho ve boon
observed within one avid the same* universe may he said ‘to he
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consistent with one another. They eon form with me another,
* slid do not in aiy \ay conflict.

Tw v ml h tons of run hsieoee uvv- some of them simple, hni

' others ate*By no means of an intuitive character. Suppose," for
.

•instem . i Ik data ;o ;i\

rlYAA 1000 (AB) "'42 WO
(A) 520 (AC) 147 .

(£) 312 (-BC) 86 w-
h 470 {ABC) • 25

— there is nothing obviously wrong with the figures. Yet they

ore certainly inconsistent They might have been observed it

li liferent times, in dillerent places or on different material but
they cannot ha\ », been observed in one and the same universe*

They imply, in fact, n negative value for (a/5y)—

(aj3y)^i000 - 525 - 312 - 470 4- 42 -f 14-7 + B( - 25.

~ 1000 - 1307 + 270 ~ 25*

Clearly no class-frequency can be negative. If the figures,

consequently* are alleged to bo the result of an actual inquiry in

a definite universe, there must have been some miscount or

b.misprint., • 0 h . : "b; .
,

'

/ ;
• y ,g „ . ;

6 C nei lly, the g we may say that any given class-frequencies

are inconsistent if they imply negative valu s for any of ihe^
unstated frequencies Oth rwise they are consistent. ToTest the

, onsist ence of any sot ol 2“ algebraic, ally in 1opendent freqx c \ cics

for the case of n attributes, we should accordingly calculate

the values of all the unstated frequencies, and so verify the fact

that they are positive. This procedure may, however, be limited

by a simple consideration. If the ultimate class-frequencies are

positive, all others must be so, being derived from the ultimate

'frequencies by simple addition. Hence we need only calculate

the values of the ultimate class-frequencies in terms of (hose

givei
,
and verily f le fact tl it they exceed zero.

7 As we saw in the last chapter, there are two sets of 2n

. algebraically independent frequencies of practical importance, viz.

(1) the lltimati (2) the positive dass-frequeaeies.

ft follows from what wt have just said that there is only one

condition of consistence for the ultimate frequencies, viz, that

they must all exceed zero. Apart from this, any one frequency of

the set may vary anywlw :e between 0 and co without becoming
inconsistent with the others.

For the positive class-frequencies, the conditions may bo

• bo
v vv
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expressed symbolically h\ expanding U ft ulu untie In terms n

the positive' mp.*h«i:s, and writing each such expansion not

Iwhs than y,(«*o. Wc will consider riw oases of one, two, and

three act ributia in. turn
:

"e;8;eTf .only ope attribute' be noted, say A, 'tliej)03itive:ii!eq!i:eiieieB
P

'

f
:

tii*e:;'2
!

P;aii«I {^),
;

^.J’arjcfj '•(&)*;wliercj-en

#*

The conditions of consistence are therefore simply-

(AHO Jsr-IAX 0 .

’

. ,

or, more con r nic ntly §xpa s v*

'

(«) m » m {a)^n . . . (
i )

. These conditions are obvious : the number of ^ ?

s cannot ho less

than Piero, nor exceed the whole number of < bserv U ( ns,

9. If two attributes be noted Ih re are four nit nnTte frerpu neies

(AS), (vi/3), (aB), (a/3). The. following conditions are given by
expanding each in terms of the frequencies of positive classes—

(n) (AliX 0

<*> (abx(A)+(B)-
(c) (AB)y(A)

{ABYHB)

or (AB) would be negative \

At
r

„ (*p ) : » : „ i

» (Aft) „ „ (
,5 (&•&) ,5 n

m

(a)
!

(e), and (d) are obvious;
(Jj)

is perhaps a little less ol warns,

and is occasionally forgotten. It is, however, of precis ij tin

same type as the other three. None of these com] ilk h are

really of a new form, but may be derived at onee from (1) (a) and

(1) (/>) by sj ccitying the universe as B or as ji respectively. The
condition

; (2) arc therefore really covered by (I).

10 But a furthm point arises as regards such a system of

limits as is given I y (2). The conditions (w) and id) give lower or

minor limits to die value of (AB)
;

(c) and '(d) give upper or

major limits. If either major limit he less th m either minor limit

the conditions are impossible, and it is necessary to see whether

(
i ) a,nd (B) can take such values that fchh may be the * use.

Expressing the condition that the major limits must ho not less

than the minor, r

- a have

—

mo i

(A)>N f

(mo i

These are simply the conditions of the form (I). If, therefor**,

(4>) and (JJ) fulfil the ondiJioHB (!) the conditions (2} must 1
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possible, fke ox Moris' (I) md (2) therefore give all the c m-
ditibsas of consistence for the case of two attribute's,’ conditions of

,

an eid.*rue ]y simple and obvious kind

# 11. Now consider the ease of three attributes. There are

veigbhhltim^^ - 'Expanding the -'-iii-,
! ter

rffee positive 'Irequencies, and ; expressing .the
.

o'onditidn-^hiafc fe&efe ;

liaxpahsionislnot less’than" zero, we have— f

;

;
y.

;

';:b ft ; h^iybyV'y:;b

» or Ukj rVcquftjicy given below

,

'' "
will be negative,

(a) (ABC)<£0 (ABO)}
‘ ' “

Wh)
'

Wf)WO
{ABy)

(MiG)
(.xBC

)

(Ay~(B)-(C) +NWy)

<*>

<«);

(d)

O
(f)

0)
(h)

MAB) + (AC)-U)
<t(AB) + (BO)-(ll)
AZ(AO)-+{fiC) - (C)

>(AB)
>UG)
MM')
MAB) + (AO + (BC)-

(3)

These, again, are not conditions of a new form. We leave it

as an exercise for the student to show that they may be derived

ft no (I) (a) and (1) (6) by specifying the universe in turn as

BC, By, ji€, and fiy. The two conditions holding infour universes

give the eight inequalities above.

12, As in the last case, however, these conditions will be inn*

powbh hi riihi ;t any one cf the major limits ( j~~{d) be loss than
•my one )f the minor limits (a)-(d). The values on the righo

iffeft be such as to make no major limit less than a minor.

There are tour major and four minor limits, or sixteen compari-

sons in all to be made. But twelve of these, the student wife

ii jd > , I ck to conditions of the form {2} IV (AB
,

;

ind
(
B(

)
es ee li e!j , The f > - t on p, msox - <

(

e tpansi >ns due
to contra ry frequencies

( [a) and (h\ (0) and (y), ( j
tnid (/), {</)

and ie)
)
alone lead to new conditions, viz.—

(a) (AB) -f (AG) + (BO) <fc (A ) + (B) + <(7) - N\
h) (AB) -f U 0) - (BO) (A)

(c) (AB)-iAG*) + (£C)3>(B)

(d) - (AB) + (AC) + (£0)>((f)

O)

13 These arc condition;? of a wholly new type not derivable

in any way from, those given under (1) and (2). They are con-

ditions for the consistence of the second-order frequencies with

each other, whilst the inequalities of the form (2) are only conditions

for the consistence of the second-order frequencies with those of

lower- orders.
1 Given any two of the ^econd-order freqxionoi^s,
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; $[$$

\ *
~

(AB) and (AG), the conditions (4) give limits for the thh * ii

They thus roplnce, for statistical purposes, the ordinary

rules ol m llogistio info a hoc. From da,tu, of tlu .yliogi lie for

they vjohld, of course, lead to the same conclusion, though in a f
1

somewhat cumbrous fashion'; one or 'two eases are suggested as
•

,the..,,s|udehi a(Questiohs; rdf and’ f 7). f LThe^/'icdfewin^l

will nerve as illustrations of the statistical uses of the con-

ditions :

—

EocmupU i.—Given that (/!) — { B) =» (0) ** |-if and 80 per cent
of the AM are H, 75 per cent of JA are V, find Urn limits to the

percentage of BA that a.re (L The data are—

%AB),

.'if;;; p'rv-''''^ ^ tt “

and the conditions give-'

US

0;8
3
ifh0-75

F <1 -0-8 -0-75

fiffi (b)

(«)

(d)

^0-8 + 0-75-1 . W
>1 -0-8 +0-75
7j»l -1-0-8 -0-75

(ft,) gives a n<*.<ative limit and (d) a. limit: creator Him. unity;
hence they may be disregarded. From (b) and (<:) wo havo-

HBG)
N ^ 0-95

-—that s ( i.y, not Joss than 55 per oont. nor more than !

cent, of the ifa can, be G.

ILm/uiple id.— if a report give the following iTeq uoncio. as

actually observed, how that hen, oust be a misprint >r mistake
of some sort, and that possibly the misprint consists in the
dropping of a 1 before the 85 given as the frequency (BO).

* ’
- #1000' '

,

U) 510 (AH) m:•.<#) 490 :
' (AG)

. 140 .

- '’'-mm

, ....
^

(O)
^

427 '

^

\ (BG). / 85

From (4) (a) we have— ’

‘

' # •
' (I/6

Y)^510 -f 490 -f 427 - 1000 - 189 - 140 '

,

; <t9«.
,

, •

But 8b« : 98, therefore if cannot ht the correct value of (b />
).

1 If we read 185 for 85 all the conditions are fulfilled.
v
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Example rilr-Iii a certain set of 1 000 observations’ (-4) ~ 45,

(./;) V 2k O') = 14. Show that a iiatevor the percentages oi /he

tl nf an j ynd of k> 1 1 • la \ h k otai iol he i kwivd dun any Ifs

are (X *
.

-

^

:

'

The conditions (a) ‘anch (b) give the' lower limit of (BG\ which

m required. We find-—

The first limit is, clearly negative, life second must also -he

negative, since (AB)iN cannot exceed "023 nor (A(J)/i¥ ‘014
,

Fierice we cannot conclude that there is any limit to (BG) greater

than 0. This result is indeed immediately obvious when we
consider that, even if all the Us were A

t
and of the remaining

22 AA 14 were C% there would still be 8 k/s that were neither

B nor <7.
. ..

"

: ; ,

- "

14. The student should note the result of the bat* example, as it

illustrates the sort of result at which one may often arrive by
applying the conditions (4) to practical statistics For given

values, of A\ (A ), (JJ\ (C), (AB), and (AG), it will often happen

that any value of (B(
}
not lies than rwto (or, more generally not '

less than either of the lower limits (2) (a) and (2) (b)

)

will satisfy

the conditions (4), and hence no true inference of a lower limit is i

possible. Fhe argument- of the typo ;c >j many kb are B and

so many BA are G that we must expect soma is to be G v must

be used with caution.
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EXERCISES,

1, i fAk* tills and n\u' 'btmciMes rr,
tk
Ih

]
c, » by YhD ( hlM n the

Statistics of Employment of Women and Girls ” [0.—7564] 1804). If, in the t

urban district of Bury, 817 per thousand of the women between 20 and 20

0 years' of age;Sreire returned as D occupied ” afcthe censure! yl89l,., .and; 2$A;pey e

thousand as married or widowed, what is the lowest proportion per thousand*”

of the married or widowed that must hare been occupied ?

2, If, in a series of houses actually invaded by small -pox, 70 per cent, oj the

inhabitants are attacked and 85 per cent, have been vaccinated, what is the

lowest percentage of the vaccinated that must have been attacked

3, Given that 50 per cent, of the inmates of a workhouse arc men* 60 per

cvTiLanririiy d *
o’, u 30 n per com. non able bodied, 35 per eei (;. aged

men 15 per ent non vble-1 di * non, and 42 per cent, non-abh bodied and
get!, find the gre:t si md v U p<> ib prop,mb s of no shlc > >di j d

jneinY Y, b ' > ’v;"'

1. (Material from rof. 5 of Obap I.) The foil, wing are the piopurtious

per 10,000 f mvs r-r v, v b eu u* elusse rt of mDei uimn t a number
of school-children. A=sdevelopment defects, 2?= nerve signs, /?= mental
dulness.

jV =10.000
877

(£)- 1,086

CD) =789

(BU) =455

8* how tin s me dud hoys do md e\ ibir
! wdopiwni dpfu*H, md low

many at least do not do so.

5. The following are the corresponding figures for girls :

—

N —10,000 - CD) =r68P

(A)^ "682 UB) = 218

(2?) = 850 (BD) = 303

Show that some defectively developed girls are not dull, and state how many
.u 1 is't must be so.

6. Take the syllogism “All A\ are B, all AY are 6*
}
therefore all A*s are

C,” express the premisses in terms, of the notation of the preceding chapters,
and deduce the conclusion by the use of the general conditions of consistence.

?. Doth ov Ci tin syllogism ill A , ire B, no J>C t,ro D, H tref

no rib are QA
C, Given that {A)~{B = (£) = 1 V, and that ( A B LC-{AC LK-p, iiucl

what must be the greatest or least values of p in order that we may infer
ihut(AC) A 'Veetuls my given value, say y.

!?. Show that if

<*>.

sta
•&* <0>_ teM~ oX

and
/

• „

N~~:ir-pr-y'

tho value of neitJjor.se lior y can oxeeed



CHAPTER III.

ASSOCIATION.
'

,

?!?' '' rM O-O 3330.
‘ i. T!u fi i ri ) uf imfept i'ii u\ , ji fin " i sc pti * of i~v ; i&rion r.rd

I sUag lor tiio same by tho cumpariMm of percentages— 11-12,
• - Numerical equality of the differences between the four second-order

frequencies and their independence values—13. Coefficients of associa-

tion^-—14i Necessity for an investigation intd the causation of an
attribute A ring « sh ided to include non-.-i’s.

I. If there is no sort of relationship, of any kind, between , two
> - )s A and B, we expect to find the same prop< tion ol A*

s

amongst the Bs as amongst the non-B’s, * We may anticipate,

for instance, the same proportion of abnormally wet seasons in
leap years as in ordinary years, the same proportion of male to

total births when the moon is waxing as when it is waning, the,

same proportion of heads whether a coin be tossed with the right

hand or the' left.'

Two such unrela ted attributes may be termed independent, and
we have accordingly as the criterion of independence for A and B—

- mJA3
' (B) JfS)

’ * * *

if this relation 'hold good, the corresponding relations

(a-S) (aft)

(AB) (aB)

(A) (a)m (a/?)

(A)
~

(a)
'

must also hold. .For it follows at once from (!) that -

(if) - UU (fi),- Up)
~ vfr~

'

' uw~’

• (i)
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that IS .
(njf) \nH)

v<rw- "

a nt } the oilier tuo Mendt-im may hr •dmiiarly d«’dm*od*\

2. Tjie orii non tony, imwvwr. o>- sou. halo a xmmwhaf *

dsftmxnt and t! mivUxtln more mmmmht iWm. Tin <j nation

(
AB) :m terms^of/;

1
' -Iwyyyyd

(AJI) (AE) + (Afi)_iA) '

*
"Tte

'

• d^Wfl # 5

ke, m wordy “ the proportion of A A amongst the BA is the name
as in the universe at 3a*ge.” The student hih:hi

I

d learn to recog-

nise this eqyn turn at sight in any of the forms—

(AB)

:m~
Wsh
(A)

a»)“

<j>

if

ff)

if

(W)
#

(AB) (A) (B)

(a)

(b)

<*)

(4

(2)

t;

0 \

The equation (<f) gives the important fundamental rule: If
<Uirllo(h'< A ami 1 are independent, the proportion of AJfs In

ntihvem u etpod to ike proportion of A"& imiliplu i by the prqpor
lion Ipfcsn '

,

' "
:

. ,

Vy

;

:

"
. -.go ; ?

' "
* | ,/

$
jl

The advantage of the forms (3) ovoi the 1’ouu (I) is that they
give expressions for the second-order frequency in terms of the

hy>i s alone; the form (i) does not.

Kmsmpli x j f i here arc 1 M A sand tel /T in lOdd objjforva*

tionSj
,
how many ABA will there he, A and B being im^penlintf

- 144x384
•

,

“1024“ “°4
'-

'
'

There will therefore he f#4 ABA, '

Example ii. If the J s aro 60 per omit., the BA : 5 percent, of

the whole number of observations, what must be the percentage
of Jteh ii order that we 3nay conclude that A and B are
independent? -—^ 60x35 4.d.

.

.

.

100 X
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and therefore there must be 21 per cent, (ib'qib dr less closely e/.

g 7f 8 -below) of Affn in the universe to justify the conclusion
'

that A am] B are independent,

* 3. It follows from g I that if the relation (1) hoi h f r my one
oi the fom second order frequencies, p/. (J /;> mmilur relations

m inmt Isold for the remaining three, Tints we have directly

from (I)—

{m U,B)C{Ap) (A)

' (F) "(Bj+JP) ~1T’
giving

And again,

S®mm1 St if

which gives

(am (a,8) (& B) (a/3) (a)

Tm-'W) JJif-fWj * W5

. («.,?•) = 0)0)

Example iii.— In Example i. above., what would he the lipniber

ofmV aud B being' independent 1

(a) = 1024 — 144 = 880 .

'

OSH 1024 - 384 = 640 .

'

880x640 SKA
'•

; Sfe
* • wa=. • ro2T“ =o5a '

'

Tho theorem in an important one, and the result may he
deduced uicre directly from first principles, replacing (AJJ) by
its value (A)(B)/AT in the expansions— .

’

- (a£)**(B)~~{AjB). -

' ; ''
. h;^V

(AP)~(A)-(JJB).

;

'

,
(a/3)^{r^(A)~(B)X(AB).

. . W":

Tliin is left as an exercise for the student.

4. Finally, the criterion oi independence may be expressed in

yet a third form, vh, in terms of the Second -cooler frequencies

alone, it A ami U are independent, it follows at coco from
equal ion ;;y and toe wort of the preceding section that—

m-tafl
And evidently 'w/y(J/-i) is equal iojdio same fraction,

^
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Therefore-

(AB)(a/3)-,iam(Ai3) (a))

(AB) (Aji)

:
:

JaBj (a/Jj

Ulh
_

(«A?)

(tI/J) (aft)

Q>>

(«)

(
3
)

,

T1k' eT iai '!of!
(
ll
)
*«ny be read “The ratio of AT to a’x amoftest

the /As is equal to the ratio of xl’s to a’s amongst the B’s,” and
(<;}: similariy, yob,:;

1'bis form of criterion, is a convenient one if all the four
second-order frequencies are given, enabling one to recognise
almost at a glance whether or not the two attributesT arev jldSpahdeiit, yy yyyi.oy-y

. y oyA, diyyyo
Example Iv.—If the second-order frequencies have the following

values, are- A awl 11 independent or not ?
*

(/l/f)==jJ0

Clearly
’

(«B) = 90
(46 )

= 290

(AIl)(afi)>(alJ)(^)
;

(a/3) =-- 310.

so A and B are not independent.

.

u now that A and B are not indepemli nt, but n lutedm some way or other, however complicated.

Then if Mitt
A ami B are said to be positively associated, or sometimes Kiniply
associated It, on the oilier band,

- (ab)<
{A)
.^1, ,

:O u
;

said to he negatively associated or, more briefly
aisabsociateu.

The student should notice that these words are. not used
l
‘'“

! ’> 1 ’

'(t'din.j ry ; 'uses, but in a let-hnical sens,-. Win „A ,UK* :ir0 svid to be associated, it is not meant nrolv that
s

f,u !ts
;
w A

f’
but ‘bat U uahero/AA Hiah are ill. "ramie

j

number to he ej'j> fed rf A. • ml B are indtp mdmL Similarly

.

11 A ° a,re haiC^ Tu negalivdy asts >c iatjL* 1 or*disasso< iuimL
ix, m not meant that w J — % B% bti that mv ...A-- of 4
w/iici are h xfatk short, of the mmJji r to be eapi Aid ii A rani H

v
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. |

ttfe independent. “ Association ” cannot, be inferred from tile

mer$ fact that s*me d’s arc JBg howe rer great that* proportion ;

this principle is fundo monied. and should be always borne :

;;;

'

;
(

W 111 mind. * *
. .

.
.

j

6 . The greatest po sibh* value of (All) for given values of
* ** W, (A), and (B) is either (A) or (B) (whichever is the less). When >

m
(AB) attains either of these values, A and B may he said to be

A v v,; completely or perfectly associated. The lowest, passible value of

(A3), on the other hand, is either zero or (A) A- {(B) (which-; s’ '

•
. ,

ever is the greater). When (AB) falls to either of these values,

A and B may be said to be completely disassociated. Complete
‘

association is generally understood to correspond re one or other

of the cases, “All A's are B” or “All Ti’s are A” or it may be
j

more narrowly defined as corresponding only to the case when
j

both these statements were ferae. Complete disassodation may
be similarly taken as corresponding to one or other of the oases.
u No AT a B” or “no a/s are [dp or more narrowly to the

case when both these statements are true. The greater the

divergence of (AB) from the value (A)(B)L\r towards the, limit-

ing value in either direction, the greater, we may say, is the

intensity of association or of disassociation, so that we may speak

of attributes Ik big 'more or lew, highly or slvjh tl / associated. T1 *s

conception of degrees of association, degrees which may in fact be

measured by certain Annum (cf. t lb), is important. d

7. When the association is very slight, i.e . where (AB) only

differs from (A)(B)/AT by a few units or by a small proportion, it

may be that such association is not really significant of any
definite relationship. To give an illustration, suppose that a coin -

is tossed a number of times, and the tosses noted in pairs
; then

100 pairs may give such resalts as the following (taken from an
actual recoiyl) :

—

First toss heads and second heads

First toss tails' and second heads

|!lPSAi|tv. 53 j? ?j .

tails

If wo use A to denote “ heads’' in the first toss, B “heads” in

the second, we have from the above (A) = 44, (3) — 53. Hence

(A)(£)/2tAA~- = 23-32, while actually (AB) is 26. Hence

there is a positive association-, in the given record, between

the result of the first throw nod the result of the second. But it

is fairly certain, from the nature of the case, that such association

cannot indicate any real connection between, the results of the

26

18

27
29"
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.ww' '/( V 1

' V 'vb

'

’

;

r:‘
,:>; /:; ( "#*y fyd b;

two throws
; it must- therefore be due merely to such a complex

||
f!m wl impossible to analyse, as leads, lor example, todiftawmes between small samples drawn from the same mate.rutl

'

' 10 wndwstotf » confirmed; by the fact that, of a number of such
(like •tM.'aWv&V, 'but

1'

owierK 1 nc >;n ti ve assoekaioiL

v->J due,. like of po^titiVe' --

tK;i.i
}
to an extremely complex system of causes of the general nature

of winch vvu are aware, but of the dcU i . ,

«! lS!i
0rant

’ “Sometimes said to be due to chance, or- better,' to

.

thMWh!
C°usldeiyion

\
v

.

Hl '3«^d'st that such associations due to
“ K/fcuat ‘ons of ^mpmnr nmht be met cd, in all in,. »f£“*

f° r.’‘V
for inst,me0 from § 1, the two illustrationsthere

ft
aHi oi independent, attributes, we ham tha in any

art-mil record wc would not be likely to lied y,! ^piopoi tion of abnormally wet seasons in leaj v. rs &j in < dinar^ ”
:
’l"'" h

f
uri '-tim ,f ,1 tie hiftln when !bcmoon is waxing as when it is wmrn.g. But so Jong as the diver-eernm imm md peunciic, is no w.-il-mark,

! we miM ......

.“S “
, » h i™» » « h;i

£
StmsSion of t5

.";
question, how great the divergence must

il m
1

,

6
T
6 Ca

f
C0nS3dcr lS as “ well-marked,” must be postponedto the chapters dealing with the theory of samplino-. At nresent the

litkmto,- 6* the student can only be' directed to the existence' of.the diUiouIty, and to the serious risk of interprets danceassociation as physically significant.
°

„
“1

rhe dd« liti
:

ni of § 5 «Wts that, we arc to test theAistwico or the intensity >f ssoeiai.ion L tweet! two a tributes
i

;
l<1

l:ans,m 11 fh< actual ml ,- 0 ;.(/’) with it iml mend-mcc
•b*'
W:

!
b ah J)i/J) J. Tiie proccJi , iJ ( j,,

' V 1 ' <!
' ,

'
l

b
i P rh :

I'" th most nature .

1

nt it ;s |3 |

pt, Ilk J?

;l

,

<ioi)fc mi 1

'""I

1

,

1 of comparing rm> , ii<
...

f)le t

piojioition of As amongst the /its with the t&wortiori in |1,J“ ar' !fu^ Snob proportions are ns, dm . u ..v,, ;\orm o, percentages r proportions per thousand
A large number of such comparisons are available for Hie

/

lS ItKii< ‘ d b-V the inequalities (4) .below vm-h ]Imld goo^for the co8e of asso iation bet^k, Tarn!

of 8 fen
1 **6

w’rHmd^ iollow at once from the definition
! ’

1 al3(l M Mlow from („) and (A), 0n rm fir

“7f
• t) N in the fir t ease (feS®!

studento
C<mU' mid ' ICt;0:J 0f ciiu reilla>nder is left to tot
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(AB):l {A)

~(F) N <«*>

(Vp.U)
(0

W)Wdi§
*(*» ti)

(c)
ops' pm
(i) (a)

(0

(.1 /3 ) (.3 )

ti)
" :v V)

PPP)
Tip y (f)

>.

(h)
OU . («)

15) p y
0)

(,m„U)
TP" v

(P (a)

PP v §
u/P 0)
P ' w (/•}

(Up M)
03) (•/»)

(9
(“)

"
(A )

H
The question arises thug which is the best comp irison to adopt?
10. Two principles should decide, this point; (1) of any two

comparisons, tiwit Is the hotter which brines? out the more dear]}

the degree of association; (2) of any two comparisons, that is

the bettor which Illustrates the more important aspect of the
problem under discussion.

^

The second condition will general 1 ? exclude all the comparisons
(c)-(m), i*yt the capital Id tors will nuinmljr be -wen to douott

the important aspect or the character. We will generally be

concerned, for instance, with the proportion ol Ad amongst the

Vs as compared • ith tlie /is ( is in (c
) )

and n >fc wit i t\ e propor-

tion of the a’s in those two universes fas in (1) ) : or with the

proportion of vfs amongst the ids as compared with the whole
universe («.), and not with the proportion of is amongst the,

/Ts as compared with the whole universe (j). That is simply the

natural method of using the notation. We may confine our
attention accordingly to the comparisons (®)-(<2). Of these

four, (c or (d) is generally to be pre [erred to (a) or (/>), tin the

reason that either of the latter may. give a misleading impression

as tc the intensity of the association. We have in fact

—

U) UB) iB) (AI3) (/3)

: . f "IbJ * w * ir '
.

Hence if (If)!IV be large compered with (ft)/Fs
{A)jF will

approach the value {AD) '(B) and the association will appear
to be very small, oven though (AJi)!(B) and {A$)jifi) differ

considerably. Suppose, for . example, in some given case, for >
consider able numbci of ohsorvaih ns—

(.W03) = -4O
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tins would murai a considerable positive association between

A ami B. But if it wmv- mily sialwi 1 hat -
• ;

- (A)i)i(B) ~ '70 {A ),

:N
'

g ' f

,

^tlie
;

b :associatioii-Vwould
;
f i be small. '-.Set-:".the - two; :StatA

v
.

fluents: ate equivaleit if (^)/iVr— 0"9, for then w8
;

,

have—

p

V-;:T
:<"

(A)jN— *7 x *9 -f ,;4 x. *1 « *87
,

’

. c

The meaning of (a) or (6), in fact, cannot be fully realised

unless the value of (B)jB' (or (A)jN in the second case) is known,
and therefore (c) is to be preferred to (a), and (cl) to- (b). An
exception may, howevef, be made in cases where the proportion

of i?
!

s (or J.
J

s) in the universe, is very small, so, that (A)/iV

approaches closely to (Aj3)/(fi) or (B)/]Sb to (aB)l(aj (ef. Example
xi. below)-, c

Tiicre still remains the choice between (a) and (b)
y
oi between

(c) and (d). This must be decided with reference to the second

principle, i.e. with regard to the more important aspect of the

problem under discussion, the exact question to be answered,

or the hypothesis to be tested, as illustrated by the examples

below.' Where no definite question has to he answered or

hypothesis tested both pairs of proportions may be tabulated,

as in Example vi, again.

Example v.—Association between sex and death. (Material,

from 04th Annual Report Reg. General, [Cd. 1230] 1903.)

Males in England and Wales, 1901 . .
.
15,773,000

females „ „ „ . 16,$48,000
Of -the fifties died ..... 285.818
Of the Females died..... 265,007

•We may denote the number of males by (A), the number of

deaths by (B
) ;

then the natural comparison is between (AB)j(A)
.and (aB)j(a), i,e. the proportion of males that died and

.

the
,B|ird|ibrtion ;.of 'females,, We find— iVpqbbW T.ep ,,,\

;pp|7TA

ab. mmm
"(A). ~ 15,773,000

(aB) 205,967

lit “16,848,000

*01 8L

-*0158.

Therefore (AB)j(A) > (aB)j(a\ and there is positive- association ,

between male-sex and death, ft is usual to express proportion*
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of deaths., births, ....marriages,
.

etc., to the population as rates per
' thousand : so that the above figures would be written

—

Death-rate among Males . , . 18*1 per thousand.

* „ Females . , 15*8 „

4 comparison of the death-rate among males with the death-

rate for the whole population would be equally valid, but it.

should be remembered that the latter depends on the sex-ratio

as well as on the causes that determine the death-rates amongst
males and females. The above figures give

—

Death-rate among males . . 1ST per thousand.

„ for whole population . 1 6*9 „

This brings
.

.out the difference, between the
.

death-rates., of

males and of. the whole population^ . buljs^npt, so clear an. . indica-

tion of the difference between males and female^ which is the

point to be investigated.

A comparison of the form (4) (c) is again valid for testing the

association, but the form is not desirable, illustrating very well

the
.
remarks on the opposite -'page. Statisticians ane;. concerned

with death-rates, and hot with the sex-ratios of the living and
the dead. The student should learn, however, to recognise such

forms of statement as the following, as equivalent to the above :

—

/ Proportion of males 'amongst those f K , 0 ,
. t 1 . ,, ® > olo per thousand,

that died m the year. . ;
. . f

1

- Proportion; of males amongst those 1; y ;

'

that did not die' in the year . J
*

/

'
• W

Since (AB)/(B)>[Aft)/(ft), it follows, as before, that there is

.

positive association between A and B. “

: ; Example vi.—-Deaf-mutism and Imbecility. (Material .from

Census of 1901. Summary Tables. [Cd. 1523.])

Total population of England- and. Wales . . .82,528,000

Number of the imbecile- (or'.feeble-minded) . 48,882

Number of deaf-mutes . . . . 15,246

Number of imbecile deaf-mutes. .- ... 451

Required,, to find whether deaf-mutism is associated with

-imbecility.

We may denote the number of the imbecile by (A), of deaf-

mutes by (£). One of the comparisons (a) or (b) may very well

be used in this case, seeing that (A)jJY and (B)/iY differ very

little from (Af3)j(f3) and (aB)j(a) Respectively. The question
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whether to give the preference to (a) or to (b) depends on the
^

nature of the investigation we wish to make. If it is desired to
'

exhibit the conditions among deaf-mutes (a) may be used :

—

Proportion of imbeciles among deaf-
1 29 .6 thougand .

•

mutes

«

(AB)/(B) . . . J

^

Proportion of imbeciles in the whole I , r

population — (A)/Ar . j

”

If, on the other hand, it is desired to exhibit the conditions

amongst the imbecile, (b) will be preferable.

Proportion of deaf mutes amongst I

g .2 tll0llsand .

the imbecile (4B)j\A) . . j
1

Proportion of deaf-mutes in the K-,-

whole population (B)/Bf . . J

e v

Either comparison exhibits very clearly the higlf degree of asso-

ciation between the attributes. It may be pointed out, however,

that census data as to such infirmities are very untrustworthy.

Example vii.—-Eye-colour of father and son (material due

to Sir Francis Galton, as given by Professor Karl Pearson, Phil.

Trans. ,
A, vol. cxcv. (1900), p. 138; the classes 1, 2, and 3 of the

memoir treated as light).

Fathers with light eyes and sons with light eyes (AB) .471
„ „ „ not light „ (Aft) . 151

„ not light „ light „ (aB) . 148

» „ not light „ (a/3) .
*230

Required to find whether the colour of the son’s eyes is

associated with that of the father’s. In cases of this kind the

father is reckoned once for each son
;

e.g. a family in which the

father was light-eyed, two sons light-eyed and one not, would be
reckoned as giving two to the class AB and one to the class A/3.

‘

The best comparison here is

—

Percentage of light-eyed amongst the sons
\

of lighteyed fathers . .

76 per cent.

Percentage of light-eyed amongst the sons I

,
of not-light-eyed fathers . , . j

’ ”

But the following is equally valid—

Percentage of light-eyed amongst the
\

fathers of light-eyed sons . . (
Per cen^

Percentage of light-eyed amongst the
(

fathers of not-light-eyed sons .
. j

'-40
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The reason why the former comparison is preferable is, that we
usually wish to estimate the character of. offspring from that of

the parents, and define heredity in terms of the resemblance of

offspring to parents. We do not, as a rule, want to make use of

the power of estimating the character of parents from that of their

offspring, nor do we define heredity in terms of the resemblance

of parents to offspring. Both modes of statement, however,

indicate equally clearly the tendency to resemblance between
father and son.

11. The values that the four second-order frequencies take in

the case of independence, viz.

—

(mu (jm <sm
N ’ N ’ N ’ '

.V
’

are of such great theoretical importance, ang[ of so much use as

reference-value^ for comparing with the actual values of the

frequencies (AB) (aB) (Aft) and (aft), that it is often desirable to

employ single symbols to denote them. We shall use the symbols

—

If 8 denote the excess of (AB) over (AB)
0,
then we have

—

(aB) = (B)-(AB) = (B)-(AB)
0 -h

w-u)m
s

= (aB)
0
- 8. ->

(AB)-(AB)
0 = (aB)

0
-(aB).

Similarly it may be shown that

—

(Afi) = (Af3)0 - 8.

(a/3) =(a/3)
# +8.

Therefore, quite generally we have—

-

(AB) - (AB)
o = (a/3) - (a/3)

0= (A[3)
0 - (AjS) = (aB\ - (aB).

Supposing, for example,

,¥=100 (A) = 60 (B) = 45
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If, now, 4 and B are positively associated, and (AB)- say 35,

then (aB) = 15 - 35 = 10, (4/3) = 60 - 35 = 25, (a/3) = 100- 6p - 45 <

+ 35 = 30, and we have—

35-27 = 30 -22 = 18- 10 = 33-25 = 8.

Similarly, if A and B be disassociated and (AB) = say 19, the student

will find that

—

r

(AB)~ 19 (aB)~ 26 (.4/3) = 41 (a/3) = 14

and 19 - 27 = 14 - 22 = 18 - 26 = 33 - 41 = - 8.

12. The value of this common difiference 3 may be expressed

in a form that it is useful to note. We have by definition—

t~(AB)~(AB)0 ~(AB) W.

Bring the terms on the right to a common denominator, and

express all the frequencies of the numerator in terms of those of

the second order; then we have

—

. 1 f (AB)[(AB) + (aB) + (4/3) + (a/3)]

)

That is to say, the common difference is equal to 1/Wth of the

difference of the “cross products” (AB)(afi) and (aB)(Afi) ; e.g.

taking the examples of § 11, we have

IIS

and

S—
100 {

35x30-25x 10
|
-8

S =—
1
19 x 14 - 26 x 41

1
= -8.

It is evident that the difference of the cross-products may be
very large if W be large, although 8 is really very small. In
using the difference of the cross-products to test mentally the
sign of the association in a case where all the four second-order

frequencies are given, this should be remembered: the difference

should be compared with N, or it will be liable to suggest a higher
degree of association than actually exists.

- Example viii.—The following data were observed for hybrids of
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Datura (W. Bateson and Miss Saunders, Report to the Evolution

Committee of the Royal Society, 1902) :

—

. 47

. 12

. 21

. 3

Investigate the association between colour of flower and char-

acter of fruit.

Since 3 x47-141, 12x21 = 252, i.e. (AB) (aJ3)<(aB) (M/3),

there is clearly a negative association; 252 - 141 = 111, and at

first sight this considerable difference is apt,to suggest a consider-

able association. But 3= 111/83 = 1*3 only, so that in point of

fact the association is small, so small that no stress can be laid

on it as indicating anything but a fluctuation of sampling.

Working out t?ie percentages we have

—

Percentage of violet-flowered plants with
| OA

prickly fruits . . . .

^.percent

Percentage of white-flowered plants with
) ^

- prickly fruits . ...
. j

6 ”

13. While the methods used in the preceding pages suffice for

most practical purposes, it is often very convenient to measure
the intensities of association in different cases by means of some
formula or “ coefficient,” so devised as to be zero when the attributes

are independent, +1 when they are completely associated, and
- 1 when they are completely disassociated, in the sense of § 6. If

we use the term “ complete association ” in the wider sense there

defined, we have, grouping the frequencies in a small table in a

way that is sometimes convenient, the three cases of complete
association :— *

(1) (2) (3)

In the first case all M’s- are B, and so (M/3) — 0 • in the second
all i>

)?

s are M and so (aB)~()

;

and in the third case we have (M) = 1

Flowers violet, fruits prickly (AB)

„ „ smooth (M/3)

Flowers white, *„ prickly (aB)

„ „ smooth (aft)
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(B) - (AB), so that all A5

» are B and also all B’s are A. The

three corresponding eases of complete disassociation are—

(4) (ft) 'JW

0 (A)(M U) {AB) Uf}} U)

(a£) (<0 \ M)
0

(S) N /; AS) m '.At
j

(B) (0 )

It is required to demise some formula which shall give the value

+ 1 in the first three eases, - 1 in the second three, and shall

also be zero where the attributes are independent. Many such

formulae may be devised, but perhaps the simplest possible (though

not necessarily the most advantageous) is the expression-

—

0 _(AB)(ap)-(Afi)(*B)

' _
(A£)(af3) + (A/3)(aB)

—where 8 is the symbol used in the two last sections for the

difference (AB) - (AB)
0

. It is evident that Q is zero when the

attributes are independent, for then 8 is zero: it takes the value 4* 1

when there is complete association, for then the second term in

both numerator and denominator of the first form of the expression

is zero : similarly it is - 1 where there is complete disassociation,

for then the first term in both numerator and denominator is

zero. Q may accordingly be termed a coefficient of association.

As illustrations of the values it will take in certain cases, the
association between deaf-mutism and imbecility, on the basis of the

English census figures (Example vi.) is +0*91
;
between light eye

colour in father and in son (Example vii.) +0*66
;
between colour of

flower and prickliness of fruit in Datura (Example viii.) - 0*28, an
association which, however, as already stated, is probably of no
practical significance and due to mere fluctuations of sampling'
The student should note that the value of Q for a given table

is unaltered by multiplying either a row or a column by any
arbitrary number, i.e. the value is independent of the relative

proportions of A 3

s and as included in the table. This property
is of importance, and renders such a measure of association

specially adapted to cases (ejj. experiments) in which the propor-
tions are arbitrary. A form possessing the same property but
certain marked advantages'bver Q is suggested in ref. (3).
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The coefficient is only mentioned here to direct tlie attention

of tlie student to the possibility of forming such a measure of

association,.a measure which serves a similar purpose in the case

8
of attributes to that served by certain other coefficients in the
cases of manifold classification (cf. Chap. Y.) and of variables

^cf. Chap. IX., and the references to Chaps. X. and XVI.). For
further illustrations of the use of this coefficient the reader is

referred to the reference (1) at the end of this chapter; for the
modified form of the coefficient, possessing the same properties

but certain advantages, to ref. (3) ; and for a mode of deducing
another coefficient, based on theorems in the theory of variables,

which has come into more general use, though in the opinion of

the present wrriter its use is of doubtful ^advantage, to ref. (4).

Reference should also be made to the coefficient described in § 10
of Chap. XI. The question of the best coefficient to use as a

measure of association is still the subject of controversy : for a
discussion the student is referred to refs. (3), (5), and (6).

14. In concluding this chapter, it may be well to repeat, for the

sake of emphasis, that (cf. § 5) the mere fact of 80, 90, or 99 per

cent, of AA being B implies nothing as to the association of A
with B

;
in the absence of information, we can but assume that

80, 90, or 99 per cent, of a’s may also be B. In order to apply

the criterion of independence for two attributes A and B
,

it is

necessary to have information concerning aV and fi’s as well as

A’s and B’s, or concerning a universe that includes both a’s and
/Ts and B’s. Hence an investigation as to the causal

relations of an attribute A must not be confined to yi’s, but must
be extended to as (unless, of course, the necessary information

as to a’s is already obtainable) : no comparison is otherwise

possible. It would be no use to obtain with grqat pains the

result (cf. Example vi.) that 29*6 per thousand of deaf-mutes

were imbecile unless we knew that the proportion of imbeciles

in the whole -population was only 1*5 per thousand; nor would

it contribute anything to our knowledge of the heredity of deaf-

mutism to find out the proportion of deaf-mutes amongst the

offspring of deaf-mutes unless the proportions amongst the off-

spring of normal individuals were also investigated or known.
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EXERCISES..

1. At the census of England and Wales in 1901 there were (to the nearest

1000) 1*5,729,000 males and 16,799,000 females; 3497 males were returned

as deaf-mutes from childhood, and 3072 females.

State proportions exhibiting the association between (leaf-mutism from
childhood and sex. How many of each sex for the same total number would
have been deaf-mutes if there had been no association ?

2. Show, as briefly as possible, whether A and B are independent, posi-

tively associated, or negatively associated in each of the following cases :

—

(«) N =5000 (A) = 2350 (5) = 3100 (AfI?)=160Q

(i) (A*, = 490 US) = 294 («) = 570 («!?)= 380

to (AB)= 256 (a£) = 768 (Afi) = 48 (ajB) - 144

3.

(Figures derived from Darwin’s Cross- and Self-fertilisation of Plants,

of. ref. 1, p. 294.*) The table below gives the numbers of plants of certain

species that were above or below the average height, stating separately those

that were derived from cross- fertilised and from self-fertilised parentage
Investigate the association between height and cross-fertilisation of parentage,

and draw attention to any special points you notice.

Species.

Parentage Cross-fer-
tilised.' Height—

Parentage Self-fer-

tilised. Height—

Above
Average.

.Below
Average.

Above
Average.

Below
!

.Average.

Iponusa purpurea .... 63 10 18 55
Petunia violacoa ,

:

61 16 IS 64
Beseda lutea 25 7 11 21 .

Beseda odorata . . . 39 -v/t 16 25 i 30
Lobelia fulgens . . . . ...

*
17 • 17 12 1

,
22.

'

;
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, 4. (Figures from same. source as Example vii. p. 34, but material differently

grouped
;
classes 7 and 8 of the memoir treated as “ dark.”) Investigate the

association between darkness of eye-colour in father and son from the following

data:

—

» Fathers with dark eyes and sons with dark eyes (AB) . 50

„ ,, j, not-dark eyes (AH) . 79
Fathers with not-dark eyes and sons with dark eyes (aB) . 89

*
„ „ ,, not-dark eyes (aj8) . 782

Also tabulate for comparison the frequencies that would have been observed

had there been no heredity, i.e. the values of (AB)0 ,
(A&)

0 ,
etc. (§ 11).

5. (Figures from same source as above.) Investigate the association between

eye colour of husband and eye colour of ''wife
‘

‘assortative mating”) from

the data given below.

Husbands with light eyes and wives with light eyes (AB) . 309

,, ,, „ not4ight eyes (AH) • 214

Husbands with not-lighteyes and wives with light eyes (aB) . 132

,, „ ,» not-liglit eyes (a@) . 119

Also tabulate for comparison the frequencies that would have been observed

bad there been strict independence between eye colour of husband and eye

colour of wife, i.e. the values of (AB)0 , etc., as in question. 4.

6. (Figures from the Census of England and Wales, 1891, vol. iii. : the data

cannot be regarded as trustworthy.) The figures given below show the

number of males in successive age groups, together with the number of the

blind (A), of the mentally-deranged (B), and the blind mehtally-deraiiged

(AB). Trace the association between blindness and mental derangement
from childhood to old age, tabulating the proportions of insane amongst the

whole population and amongst the blind, and also the association coefficient

Q of § 13. Give a short verbal statement of your results.

5- 15- 25-
:

35- 45- 55- 65- 75 and
upwards.

N
(A)

<B

)

(AB)

S.304,230
844

2,820
17

2,712,521
1,184

6,225
19

2,089,010

1,165
8,482

19

1,611,077

1,501
9,214 !

31
!

1,191,789
1752
8,187

32

770,124
1,905
5,799

34

444,S9G
1,932
3,412

22
-j

161.692

1,701

1,098
9

7. Show that if

(AB)
j (aB)i (Afi)^ (a&)i

(AB)2 (aB)2 (A®2 (aj3)2

be two aggregates corresponding to the same values of (A), (B), (a), and (£),

(AB)i - (AB)2=(aB)2 - (aB)
1 ~(AH)2 - (Afa= (a.H)i - (<*/%.

8. Show that if

5 = (AB) - (AB)0
(ABf+ (aH? - (aBf - (AfiT= [(A) - (a)!(B) -($)} 4- 2N. 8.

9. The existence of association may be tested either by comparison of pro-

portions (e.g .
(AB)j(B) with (AH)I(H)), as in §§ 9, 10, or by the value of 5, as

in §§ 11, 12. Show that

. (B)(H)j(AB) (AH)\
N l (B) (H) f

_(A)(a)((AB) (*B)\

W) 1 (A) * (a) J



CHAPTER IV.

PARTIAL ASSOCIATION.

1-2, Uncertainty in interpretation of an observed association—8-5. Source of

the ambiguity : partial associations—6-8. Illusory association clue

to the association of each of two attributes with a third—9. Estima-

tion of the partial associations from the frequencies of the second

order—10-12. The total number of associations fop a given number

of attributes—13-14. The case of complete independence.

1. If we find that in any given case

*

(
AB)> or

all that is known is that there is a relation of some sort or kind

between A and B. The result by itself cannot tell as whether

the relation is direct, whether possibly it is only due to
tc
fluctuations

of sampling ” (c/. Chap. HI. /§§ 7-8), or whether it is of any other

particular kind that we may happen to have in our minds at the

moment. Any interpretation of the meaning of the association is

necessarily hypothetical, and the number of possible alternative

hypotheses iS in general considerable.

2. The commonest of all forms of alternative hypothesis is of

this kind : it is argued that the relation between the two attributes

A and B is not direct, but due, in some way, to the association of

A with G and of B with G. An illustration or two will make the

matter clearer

(1) An association is observed between u vaccination ” and
u exemption from attack by small-pox,” i.e. more of the vaccinated

than of the unvaccinated are exempt from attack. It is argued
that this does not imply a protective effect of vaccination, but is

wholly due to the fact that most of theamvaccinated are drawn from
the lowest classes, living in very unhygienic conditions. Denoting
vaccination by A

,
exemptionfrom attach by B

i
hygienic conditions by

G
,
the argument is that the observed association between A and B

is due to the associations of J?oth with (7.

42
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(2) It is observed, at a general election, that a greater

proportion of the candidates who spent more money than their

opponents. won their elections than of those who spent less. It

.
is argued* that this does not mean an influence of expenditure on
the result of elections, but is due to the fact that Conservative

principles generally carried the day, and that the Conservatives

generally spent more than the Liberals. Denoting winning by A,

spending more than the opponent by B, and Conservative by C, the

argument is the same as the above (cf. Question 9 at the end of

the chapter).

(3) An association is observed between the presence of some
attribute in the father and its presence in the son ;

and also

between the presence of the attribute in the grandfather and its

presence in the grandson. Denoting the presence of the attribute

in son, father, and grandfather by A, B, and C, the question arises

whether the association between A and C may not be due solely

to the associations between A and B
,
B and C, respectively.

3. The ambiguity in such cases evidently arises from the fact

that the universe of observation, in each case, contains not

merely objects possessing the third attribute alojje, or objects

not possessing it, but both.

If the universe were restricted to either class alone the given

ambiguity would not arise, though of course others might remain.

Thus, in the first illustration, if the statistics of vaccination

and attack were drawn from one narrow section of the population

living under approximately the same hygienic conditions, and an
association were still observed between vaccination and exemption

from attack, the supposed argument would be refuted. The fact

would prove that the association between vaccination and
exemption could not be wholly due to the association of both with

hygienic conditions.

Again, in the second illustration, if we confine our attention to

the “ universe ” of Conservatives (instead of dealing with candidates

of both parties together), and compare the percentages of Conserva-

tives winning elections when they spend more than their opponents

and when they spend less, we shall avoid the possible fallacy. If

the percentage is greater in the former case than in the latter, it

cannot be for the reasons suggested in § 2.

The biological case of the third illustration should he similarly

treated. If the association between A and C be observed for

those cases in which all the parents, say, possess the attribute, or

else all do not, and it is still sensible, then the association first

observed between A and C for the whole universe cannot have

been due solely to the observed associations between A and B, B
and C. •
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4, The associations observed between the attributes A and B
in the universe of O 's and the universe of y’s may be termed

partial associations, to distinguish them from the total associations

observed between A and B in the universe at large. In* terms of
#

the definition of § 5 of Chap. ILL, A and B will be said to be posi-

tively associated in the universe of CV(c/ § 4 of Chap. II.) when ^ -

(ABO)>mm" (0 '

(
1
)

and. negatively associated in the converse case.

As in the simpler case, the association is most simply tested by

a comparison of percentages or proportions (§ 9, Chap. III.),

although for some purposes a “coefficient of association ” of

some kind may be useful. Confining our attention to the more

fundamental method, if A and B are positively associated within

the universe of 6Y

’s, we must have, to quote only the four most

convenient comparisons (of. (4) (a)-(d\ Chap. ILL p* 31),

(ABC) (AO)

(c)

(AW) (A/3C)

(J3C)
>

(fW)

(a)

(«)

{ABC) (BU)

(AC) (C) { ’

(ABC) (aBC)
* (AC) (aC) x )

(
2
)

These inequalities may easily be rewritten for any other case by
making the proper substitutions in the symbols

;
thus to obtain

the inequalities for testing the association between A and 0 in

the universe of B% B must be written for (7, /3 for y, and vice

versa
,
throughout

;
it being remembered that the order of the

letters in the class-symbol is immaterial. The remarks of § 10,

Chap. III., as to the choice of the comparison to be used, apply of

course, equally* to the present ease.

5. Though we shall confine ourselves in the present work to

the detailed discussion of the case of three attributes, it should he
noticed that precisely similar conceptions and formulae to the
above apply in the general case where more than three attributes

have been noted, or where the relations of more than three have
to he taken into account. If, when it is observed that A and B
are still associated within the universe of 0% it is argued that
this is clue to the association of both A and B with A), the argu-
ment may be tested by, still further limiting the field of observa-
tion to the universe 01), If

(ABCI»>^gp.
"A and B are positively associated within the universe of CD's,

and the association cannot be wholly ascribed to the presence and
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absence of D as suggested, nor to the presence and absence of

G and D conjointly. If it be then argued that the presence

and absenc.e of E is the source of association, the process may

#
be repeated as before, the association of A and B being tested

for the universe CDE, and so on as far as practicable.

Partial associations thus form the basis of discussion for any
case, however complicated. The two following examples will

serve as illustrations for the case of three attributes.

Example i.—(Material from ref. 5 of Chap. I.)

The following are the proportions per 10,000 of boys observed

with certain classes of defects, amongst a number of school

children. (A) denotes the number with development defects, (B)

with nerve-signs, (D) the number of the “-dull.”

F 10,000 (AB) 338

(A) 877 (AD) 338

<4 1,086 (BD) 455m 789 (ABD) 153

The Report from which the figures are drawn concludes that “ the

connecting link between defects of body and mental dulness is

the coincident defect of brain which may he known by observation

of abnormal nerve-signs.” Discuss this conclusion.

The phrase “ connecting link ” is a little vague, but it may
mean that the mental defects indicated by nerve-signs B may
give rise to development-defects A, and also to mental-dul-

ness D
;
A and D being thus common effects of the same cause

B (or another attribute necessarily indicated by B), and not

directly influencing each other. The ease is. thus similar to that

of the first illustration of § 2 (liability to small-pox and to non-

vaccination being held to be common effects of the Same circum-

stances), and may be similarly treated by investigation of the

partial associations between A and D for the universes B and /?.

As the ratios (A)/E, (B)/E, (E)/E are small, comparisons of the

form (4) (a) or (b) of Chap. III. (p. 31), or (2) (a)
(
b

)

above, may
very well be used (cf. the remarks in § 10 of the same chapter,

pp. 31-2).

The following figures illustrate, then, the' association between
A and D for the whole universe, the ^-universe and the /3-

universe :—

-

For the entire material

Proportion of the dull = (Z))/iV . . .
=

jj 55 defectively developed wlio 1

were dull= (AD)J(A ) . . .• . J

789
~

10
}
000

“ 7 '9 per cent.

338

877
— = 38*5
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For those exhibiting nerve signs

Proportion of the dull= . . =_1?L =41 -9 percent
1 ,0of)

,, „ defectively developed who \ _ 153 _ , r

were dull = {ABD)I{AB)

.

. . ./“IsF
-

*

For those not exhibiting nerve signs «

Proportion of the dull =(j&D)/(#) . . = ’

$AJ7J
" *>

,, ,, defectively developed who \ __ 185 «
4 .0

were dull ~\a$I))I(A&) . . . . j 539
r ”

The results are extremely striking
;
the association between A

and D is very high indeed both for the material as a whole (the

universe at large) and for those not exhibiting nerve-signs (the

/3-universe), but it is vert/ small for those who do exhibit nerve-

signs (the 73-universe).

This result does not appear to be in accord with the conclusion

of the Beport, as we have interpreted it, for the association

between A and D in the /3-universe should in that case have

been very low instead of very high.

Example fi.—Eye-colour of grandparent, parent and child.

(Material from Sir Francis Galton’s Natural Inheritance (1889),

table 20, p. 216. The table only gives particulars for 78 large

families with not less than 6 brothers or sisters, so that the

material is hardly entirely representative, but serves as a good
illustration of the method.) The original data are treated as in

Example vii. of the last chapter (p. 34). Denoting a light-eyed

child by A, parent by B, grandparent by 0,
every possible line of

descent is taken into account. Thus, taking the following two
lines of the table,

Children Parents Grandparents

the first would give 4xlxl=4to the class ABC, 4 x 1 x 3 = 12 to

the class ABy
, 4 to A/3C, 12 to A/Sy, 5 to aBG, 15 to aBy, 5 to

a/3C, and 15 to a/3y
;
the second would give 3x1x4=12 to the

class ABC, 12 to A/3C, 16 to aBC, 16 to a/30, and none to the re-

mainder. The class-frequencies so derived from the whole table are,

(ABC) 1928 (aBC) 303
(ABy) 596 (aBy) 225

(.A/3C)
' 552 (a/3G) 395

(ABy) 508* (aBy) 501



IV.—PARTIAL ASSOCIATION. 47

The following comparisons indicate the association between

grandparents and parents, parents and children, and grand-

parents and
#
grandchildren, respectively :

—

Grandparents and Parents.

Proportion of light-eyed amongst the
| =(5^= |2|1 = roent,

children oi lignt-eyedgrandparents j (6) al78 1

Proportion of light-eyed amongst the 'j
^

321
children of not-light-eyed grand- j-

=
-py =

parents . . . . j
^ °

= 44*9

Proportion of light-eyed amongst the )

children of light-eyed parents
. j

= 82 ‘7 per cent.

= 54 *2

Parents and Children^

<43 -

Proportion light-eyed amongst the \
children of not-light-eyed parents

. J (£)

In both the above cases we are really dealing with the

association between parent and offspring, and consequently the

intensity of association is, as might be expected, approximately

the same
;
in the next' case it is naturally lower :

—

2524

"3052

1060
=

1956

Grandparents and Grandchildren.

Proportion of light-eyed amongst the 1

grandchildren of light-eyed grand-
J-

parents , , . . . j

Proportion of light-eyed amongst the
grandchildren of not-light-eyed

grandparents

[AC) 2480 ,

=W =
3l7S

= ,8
'0perCent-

!}" (7)

1104

1830
= 60*3

We proceed now to test the partial associations between grand-

parents and grandchildren, as distinct from the total associations

given above, in order to throw light on the real nature of the

resemblance. There are two such partial associations to be

tested
: (1) where the parents are light-eyed, (2) where they are

not-light-eyed. The following are the comparisons :

—

Grandparents and Grandchildren : Parents light-eyed.

1928Proportion of light-eyed amongst the
) (ABC)

grandchildren of light-eyed grand- > = Tg/W
parents . . . . . ) • y

C">231“ 86 4 Per ceilb

Proportion of light-eyed amongst the

"

grandchildren of not-light-eyed -

grandparents . . . . .

(ABy)_ 596
‘ (By) 821

= 72*6
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Grandparents and Grandchildren : Parents notlight-eyed.

Proportion of light-eyed amongst the (A $U) 552
grandchildren of light-eyed grand- = Per cent*

parents : ' ..." . . J
* "f ,

• Proportion of light-eyed amongst the
^ (Afiy) 508

grandchildren of not-light-eyed j- ~ fTwi = 50 ‘3 , t *

grandparents . . . j

In both oases the partial association is quite well-marked, and

positive
j
the total association between grandparents and grand-

children cannot, then, be due wholly to the total associations

between grandparents and parents, parents and children, re-

spectively. There is an ancestral heredity
,
as it is termed, as

well as a parental heredity.

We need not discuss the partial association between children and

parents, as it is comparatively of little consequence. It may be

noted, however, as regards the above results, Ishafc the most

important feature may be brought out by stating three ratios

only.

If ^4 and B are positively associated, (AB)j(JB)>(A)/M.

If A andV are positively associated in the universe of i?’s,

(ABG)/(BG)> (AB)/(B). Hence (A)/IT, {AB)/(B), and (ABO)/(BG)
form an ascending series. Thus we have from the given data

—

Proportion of light-eyed amongst)
children in general . , . j

Proportion of light-eyed amongst the \
children of light-eyed parents . j

Proportion of light-eyed amongst the)
children of light-eyed parents and

J-
= [ABC)j{BQ) = 86 *4

,,

grandparents . . . J

If the great-grandparents, etc., etc., were also known, the series

might be continued, giving (.ABGB)/(BGD), (ABG.DE)j(BGDE),
and so forth. The series would probably ascend continuously

though with smaller intervals, A and D being positively associated

. in the universe of BG's, A and E in the universe of BGD% etc.

6. The above examples will serve to illustrate the practical

application of partial associations to concrete cases. The general

nature of the fallacies involved in interpreting associations

between two attributes as if they were necessarily due to the

most obvious form of direct causation is more clearly exhibited
by the following theorem

If A and B are independent within the universe of Gf

s and also

within the universe of y
7

s, they will nevertheless be associated

'within the universe at large, unless C is independent of either A
or B or both , *

(AB)/(B) -82*7
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The two data give-

(ABC):
(AG)(BO)
" (C)

1

{ABy)
. gy)(^)

'. tW-(^Ol[(i?)-(J?C)l
j

. (3)

(y)

Adding them together we have

—

{AB)
=
(ch) {

- (A ){C')(BG) - [B){C){AC)+

[

A ){B){C)}

Write, as in § 11 of Chap. III. (p. 35)—

•

subtract (AB)
Q
from both sides of the above equation, simplify,

and we have

(ab) - (ab)
0 = mmc) -

This proves the theorem; for the . right-hand side will not be
zero unless either (AG) — (AC)

0
or (BO) = (BC)

0
.

7. The result indicates that, while no degree of heterogeneity

in the universe can influence the association between A and B
if all other attributes are independent of either A or B or botlxp

an illusory or misleading association may arise in any case where
there exists in the given universe a third attribute G with which
both A and B are associated (positively or negatively). If both

associations are of the same sign, the resulting illusory association

between A and B will be positive
;

if of opposite sign, negative.

The three illustrations of § 2 are all of the first kind. In (1) it

is argued that the positive associations between vaccination and
hygienic conditions

,
exemption from attach and hygienic conditions

,

give rise to an illusory positive association between vaccination

and exemptionfrom attach In (2) it is argued that the positive

associations between conservative and winning
,

conservative and
spending more

,
give rise to an illusory positive association between

winning and spending more. In (3) the question is raised whether
the positive association between grandparent and grandchild may
not be due solely to the positive associations between grandparent

and parent, parent and child.
.

Misleading associations of this kin(| may easily arise through

4
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the mingling of records, e.g. respecting the two sexes, which a

careful worker would keep distinct.

Take the following case, for example. Suppose there have been

200 patients in a hospital, 100 males and 100 females, suffering

from some disease. Suppose, further, that the death-rate for males

(the case mortality) has been 30 per cent., for females 60 per cent f
^~

A new treatment is tried on 80 per cent, of the males and 40 per

cent, of the females, and the results published without distinction

of sex. The three attributes, with the relations of which we are

here concerned, are death
,
treatment and male sex. The data show

that more males were treated than females, and more females

died than males
;
therefore the first attribute is associated nega-

tively, the second positively, with the third. It follows that there

will be an illusory negative association between the first two—
death and treatment If the treatment were completely inefficient

we would, in fact, have the following results :— #

Males. Females. Total,

Treated and died . 24 24 48

= and did not die 56 16 72

Not treated and died . . 6 36 42

„ and did not die . 14 24 38

i.e. of the treated, only 48/120 = 40 per cent, died, while of those

not treated 42/80 = 52*5 per cent. died. If this result were stated

without any reference to the fact of the mixture of the sexes, to

the different proportions of the two that were treated and to the

different death-rates under normal treatment, then some value in

the new treatment would appear to be suggested. To make
a fair return, either the results for the two sexes should be

stated separately, or the same proportion of the two sexes

must receive the experimental treatment' Further, care would
have to be -taken in such a case to see that there was no
selection (perhaps unconscious) of the less severe cases for treat-

ment, thus introducing another source of fallacy (cfeu^/^ositively

associated with severity
,

treatment negatively associated with

severity
,

giving rise to illusory negative association between
treatment and death),

A misleading association between the characters of parent and
offspring might similarly be created if the records for male-male
and female-female lines of descent were mixed. Thus suppose 50
per cent, of males and 10 per cent, of females exhibit some
attribute for which there is no association in either line, then we
would have for each line and for a mixed record of equal
numbers— - *

d
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Parents with attribute and
children with

Parents with attribute and
children without

.

and children with . j

Parents without attribute

and children without :}

Male line. Female line. Mixed record.

25 pel cent. 1 per cent. 13 per cent.

25 9
,,

17 5)

25
99 9 „ 17 91

25
99 81 „ 53

91

Here 13/30 = 43 per cent. of . the offspring of parents with the

attribute .possess the attribute themselveg, but only 17/70 = 24
per cent, of the offspring of parents without the attribute. The
association between attribute in parent and attribute in offspring

is, however, due solely to the association of both with male *sex.

The student w$l see that if records for male-female and female-

male lines were mixed, the illusory association would be negative,

and that if all four lines were combined there would be no illusory

association at all.

8. Illusory associations may also arise in a different way
through the personality of the. observer or observers. If the

observer’s attention fluctuates, he may be more likely to notice

the presence of A when he notices the presence of B, and vice

vers'd
;
in such a case A and B (so far as the record goes) will both

be associated with the observer’s attention (7, and consequently

an illusory association will be created. Again, if the. attributes

are not well defined^ one observer may be more generous than
another in deciding when to recol’d the presence of A and also

the presence of B
,
and even one observer may fluctuate in the

generosity of his marking. In this case the recording of A and
the recording of B will both be associated with the generosity

of the observer in recording their presence, 0
,
and an illusory

association between A and B will consequently arise,
. as

before.

9. It is important to notice that, though we cannot actually

determine the partial associations unless .the third-order frequency

(ABC) is given, we can make some conjecture as to their sign

from the values of the second-order frequencies.

Suppose, for instance, that

—

(
^y)==(MM + 3

2

. (
5
)
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so ^that S
2
and S

2
are positive or negative according as A and B

are, positively or negatively associated in the universes of C and

y respectively. Then we have by addition—

(AS): ,(A£m)j±im +Sl+ 8
2(O) (7)

(
6
)

Hence if the value of (AB) exceed the value given by the first

two terms (Le.ii S
1 + S

2
be positive), A and B must be positively

associated either in the universe of C% the universe of y’s, or

both. If, on the other hand, (AB) fall short of the value given by
the first two terms, A and B must be negatively associated in

the universe of C% ^the universe of y’s, or both. Finally, if

(AB) be equal to the value of the first two terms, A and B must
be positively associated in the one partial universe and negatively

in the other, or else independent in both.

The expression (6) may often be used in the following form,

obtained by dividing through by, say, (B)

—

(A2>_<1£> m,<M (AtMi+A
m " m m m m+m (?)

In using this expression we make use solely of proportions or

percentages, and judge of the sign of the partial associations

between A and B accordingly. A concrete case, as in Example iii.

below, is perhaps blearer than the general formula.

Example iii.—(Figures compiled from Supplement to the Fifty-

fifth Annual Report of the Registrar-General [C.—8503], 1897.)

The following are the death-rates per. thousand per annum, and the

proportions over 65 years of age, of occupied males in general,

farmers, textile workers, and glass workers (over 15 years of age

in each case) during the decade 1891-1900 in England and 'Scales.

Death-rate

per thousand.

Proportion

per thousand
over .65 Years

of Age.

. 15*8 46

.
19*6

. 132
.

15*9 34-

. 16*6 16

Occupied males over 15
Farmers „ „ . .

Textile workers, males ove

Glass workers „

Would farming, textile working, and glass working seem to be
relatively healthy or unhealthy occupations, given that the death-

rates among occupied males from 15-65 and over 65 years of age
are 11*5 and 102*3 per thousand respectively ?

If A denote death, B the-given occupation, G old age, we have
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to apply the principle of equation (7). Calculate what would be

the death-rate for each occupation on the supposition that the

death-rates for occupied males in general (11*5, 102-3) apply to

each of its separate age-groups (under 65, over 65), and see

whether the total death-rate so calculated exceeds or falls short

of the actual death-rate. If it exceeds the actual rate, the

occupation must on the whole be healthy
;

if it falls short, un-

healthy. Thus we have the. following calculated death-rates ;

—

Farmers . . . 11*5 x *868 + 102*3 x -132 = 23-5.
"

Textile workers . 1 1 *5 x *966 + 102*3 x *034 - 14*6.

Glass workers . . 11*5 x *984 + 102*3 x *016 == 13*0.

The calculated rate for 'farmers largely exceeds the actual rate
;

farming, then, must on the whole, as one would expect, be

a healthy occupation. The death-rate for either young farmers

or old farmers, or both, must be less than for occupied males in

general (the Sist is actually the case); the high death-rate

observed is due.solely to the large proportion of the aged. Textile

working, on the other hand, appears to be unhealthy (14*6 < 15*9),

and glass working still more so (13*0 <16*6) ; the actual low total

death-rates are due merely to low proportions of the aged.

It is evident that age-distributions vary so largely from one

occupation to another that total death-rates are liable to be very

misleading—so misleading, in fact, that they are not tabulated at all

by the Registrar-General ; only death-rates for narrow limits of age

(5 or 10 year age-classes) are worked out. Similar fallacies are

liable to occur in' comparisons of local death-rates, owing to

variations not only in the relative proportions of the old, but also

in the relative proportions of the two sexes.

It is hardly necessary to observe that as age is a variable quantity,

the above procedure for calculating the comparative death-rates

is extremely rough. The death-rate of those engaged in any occu-

pation depends not only on the mere proportions over and under

65, but on the relative numbers. at every singly year of age. The
simpler procedure, brings out,- however, better than a more complex
one, the nature of the fallacy involved in assuming that crude death-

rates are measures of healthiness. [See also Chap. XL §§ 17-19.]

Example iv.—Eye-colour in grandparent, parent and child.

(The figures are those of Example ii.) ^
A

,
light-eyed child

;
B

,
light-eyed parent

; (7, light-eyed grand-

parent.

N =5008
(A) = 3584
(B) = 3052

(G) -3178

fAB) = 2524
[AC) ~ 2480
[BG) = 2231
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Given only the above data, investigate whether there is probably

a partial association between child and grandparent.

If there were no partial association we would have—

r (ab)[bg) mm{AG)~~rivr +
~w~'

2524x 2231 1060 x 947

3052
+ ~ 1956

= 1845-0 + 513-2

= 2358-2.

Actually (AC) = 2480,; there must, then, be partial association

either in the JJ-imiverse, the /5-universe, or both. In the absence

of any reason to the contrary, it would be natural to suppose there

is a partial association in both
;

i.e. that there is a partial

association with the grandparent whether the fine of descent

passes through “ light-eyed ” or “ not-light-eyed
55

parents, but this

could not be proved without a knowledge of the class-frequency

(ABC).
10. The total possible number of associations to be derived from

% attributes grows so rapidly with the value of n that the evalua-

tion of them all for any case in which n is greater than four

becomes almost unmanageable. For three attributes there are 9

possible associations—three totals, three partials in positive

universes, and three partials in negative universes. For four

attributes, the number of possible associations rises to 54,

for there are 6 pairs to be formed from four attributes, and
we can find 9 associations for each pair (1 total, 4 partials

with the universe specified by one attribute, and 4 partials

with the universe specified by two). For five attributes the

student will find that there are no less than 270, and for six

attributes 1215 associations.

As suggested by Examples i. and ii. above, however, it is not

necessary in any actual case to investigate all the associations

that are theoretically possible
;
the nature of the problem indicates

those that are required.

In Example i., for instance, the total and partial associations

between A and I) were alone investigated
;
the associations between

A and /i, B and D were not essential for answering the question

that was asked. In Example ii., again, the three total associations"

and the partial association between A and C were worked out,

but the partial associations between A and B, B and C were
omitted as unnecessary. Practical considerations of this kind will

always lessen the amount obmecessary labour.
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11. It might appear, at first sight, that theoretical considera-

tions would enable us to lessen it still further. As we saw in

Chapter L, all class-frequencies can be expressed in terms of those
of the positive classes, of which there are 2n in the case of n
attributes. For given values of the n -f 1 frequencies jV

r
,
(A), (J5),

ijO), . . .of order lower than the second, assigned values of the
positive class-frequencies of the second and higher orders must
therefore correspond to determinate values of all the possible

associations. But the number of these positive class-frequencies

of the second and higher orders is only 2n -71 + 1 ; therefore the

number of algebraically independent associations that can he

derived from attributes is only 2% -tH- 1. For successive

values of n this gives— *

n 2B - %.+'!

Hence if we give data, in any form, that determine four
associations in the case of three attributes, eleven in the case of

four attributes, and so on, in addition to Wand the class-frequencies

of the first order, we have done all that is theoretically necessary.

The remaining associations can be deduced.

12. Practically, however, the mere fact that they crm be deduced

is of little help unless such deduction can he effected simply,

indeed almost directly, by mere mental arithmetic almost, and

this is not the case. The relations that exist between the ratios

or differences, such as (AB) ~ (AB)0i that indicate tl?e associations

are, in fact, so complex that an unknown association cannot he

determined from those that are given without more or less lengthy

work ; it is not possible to infer even its sign by any simple

process of inspection. We have, for instance, from (5), by the

process used in obtaining (4) for the special case of § 6

—

[{AB) - (AB),}-Tg
}

[(^(7) -(AC^UBO) - (BC)e]

which gives us the difference of (ABy) from the value it would

have if A and B were independent in the universe of - y s in terms

of the difference of (ABC) from the* value it would have if A and
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B were independent in the universe of G% and the corresponding

differences for the- frequencies (AB), (AC), and (BG). The four

quantities in the brackets on the right represent, sa^, the four

known associations, the bracket on the left the unknown association.

Clearly, the relation is not of such a simple kind that the term on

the left can be, in general, mentally evaluated. Hence in con?

sidering the choice and number of associations to be actually

tabulated, regard must be had to practical considerations rather

than to theoretical relations.

13. The particular case in which all the 2n - n + 1 given associa-

tions are zero is worth some special investigation.

It follows, in the first place, that all other possible associations

must be zero, i.e. that
1*a state of complete independence, as we

may term it, exists. Suppose, for instance, that we are given

—

(ab)AAM) W(g)
‘ N
(AC)(BC) \. (A)(B)(C)

..

- (g)'- m
\

Then it follows at once that we have also-—

(BG)-
(WG)

'
JUT

(AC)-

(ABC) --

(ABC)-
(AB)(BC) .(AB)(AC)

" m ~ m’
i.e. A and C are independent in the universe of j?’s, and B and O
in the universe of A’s. Again,

(ABy) = (AB)-(ABC)

\ (W)(y) (Aim)
" X'2

~
(?)

'

(MSJSiS(G)
j\
t ' m

Therefore A and B are independent in the universe of y
J

s.

Similarly, it may be shown that A and G are independent m the
universe of fts, B and G in the universe of cds.

. In the next place it is evident from the above that relations -of

the general form (to write the equation symmetrically)

(ABC) (A) - ..(B) (G)

JSf W ' B * JV

must hold for every class-frequency. This relation is the general
form of the equation of independence, (2) (d), Chap. III. (p. 26).

14. It must be noted, however, that (8) is not a criterion for the
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complete independence of At, 2?, ancT (7 in the sense that the

equation

(AB)JA) (B)

N N : N
, is a criterion for the complete independence of A and B . If we
are given iY, (A), and (B), and the last relation quoted holds

good, we know that similar relations must hold for (A/3), (aB),

and (d/3). If Ny (A), (.B),
and (G) be given, however, and the

equation (8) hold good, we can draw no conclusion without

further information * the data are insufficient. There are eight

algebraically independent class-frequencies in the case of three"

attributes, while 2V", (A), (B), (G) are only fpur : the equation (8)

must therefore be shown to hold good ion: four frequencies of the

third order before the conclusion can be drawn that it holds good

for the remainder, i.e

.

that a state of complete independence

subsists. The direct verification of this result is left for the

student.

Quite generally, if if, {A), (.B), (0), .... be given, the relation

(ABC . . . .) (A) (B) (C) * ,9V~ Hf • F • ir*
• • •

•
:Vv

must be shown to hold good for 2n -n + 1 of the wth order classes

before it may be assumed to hold good for the remainder. It is

only because

2n -n +

1

= 1

when 2 that the relation

(j) - w '

N W ' KT’

may be treated as a criterion for the independence of A and B.
2/ all the n (n>2) attributes are completely independent, the

relation (9) holds good
;
but it does nqt follow that if the relation

(9) hold good they are all independent.
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EXERCISES.
1.

Take the following figures for girls corresponding to those for boys in

Example i., p. 45, and discuss them similarly, but not necessarily using

exactly- the same comparisons, to see whether the conclusion that “ the

connecting link between defects of body and mental dulness is the coincident

defect of brain Which maybe known by observation of abnormal nerve signal
*

seems to hold good.

A, development defects. B
,
nerve signs. i), mental dulness

N 10,000 (AB) 248

(A) 682 (AD) 307

(B

)

850 (BD) 363

(V) 689'
(
ABD

)

128

2.

(Material from Census of England and Wales
, 1891, vol. hi.) The

following figures give the numbers of those suffering from single or combined

infirmities : (1) for all males, (2) for males of 55 years of age and over.

A
,
Blindness. B, Mental derangement. C, Deaf-mutism.

(1) (?) a) (2)

All Males. Males 55- All Males. Males

14,053,000 1,377,000 (AB) 183 65

, 12,281 5,538 (AC) 51 14

4-5,392 10,309 (BC) - 299 47

7,707 746 (ABC) 11 3

Tabulate proportions per thousand, exhibiting the total association between
blindness and mental derangement, and the partial association between the

same two infirmities among deaf-mutes, (1) for males in general, (2) for those

of 55 years of age or over. Give a short verbal statement of the results, and
contrast them with those of Question 1.

3. (Material from supplement to 55th Annual Report Reg.-Genl.)

The death-rate from cancer for occupied males in general (over 15) is

0*685 per thousand per annum, and for farmers 1 *20.

The death-rates from cancer for occupied males under and over 45 respec-

tively are 0*lS and 2*25 respectively. Of the farmers 46*1 per cent, are over

45. ' V
Would you say that farmers were peculiarly liable to cancer ?

4. A population of males over 15 years of age consists of 7 per cent, .oyer 65

years of age and 93 per cent, under. The death-rates are 12 per thousand per

annum in the younger class and 110 in the older, or 1 8*86 in the Whole
population. The death-rate of males (over 15) engaged in a certam industry
is 26 *7 per thousand. ;

If the industry be not unhealthy, what must be the approximate proportion

of those over 65 engaged in it (neglecting minor differences of age
distribution) ?

5. Show that if A and B are independent, while A. and G, B and C are

associated, A and B must be disassociated either in the universe of C%
the universe of 7’s, or both.

6. As an illustration of Question 5, show that, if the following were actual

data, there would be a slight dissociation between the eye-colours of

husband and wife (father and mother) for the parents either of light-eyed
sons or not-light-eyed sons, or both, although there is a slight positive

association for parents at larger
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A light-eye colour in husband, B in wife, C in son-

JS
T 1006 US)-\ 358

U) 622 (AC) 471
(S) 558 (SC) 419

(0) 617

,7. Show that if (ABC)=\a$y), (aBC)=(AI3y), and so on (the case of
4 ‘complete equality of contrary frequencies” of Question 7, Chap. I.), A, B,
and G are completely independent if A and B

,
A and C, B and G are inde-

pendent pair and pair.

8.

If, in the same case of complete equality of contraries,

show that

(AB) ~ N/4: = '8

1

(AC) ~N/4.=K
(BO) -Nj4 = 5^

(ABC)
(AO)(BG)

(C)
(ABy)

(Ay)(By)

(y)

IMi
" n

so that the partial associations between A and B in the universes G and y are

positive or negative according as

4SA
< N *

9. In the simple contests of a general election (contests in which one
Conservative opposed one Liberal and there were no other candidates) 66 per

cent; of the winning candidates (according to the returns) spent more money
than their opponents. Given that 63 per , cent, of the winners were Con-
servatives, and that the Conservative expenditure exceeded the Liberal in 80
per cent, of the contests, find the percentages of elections won by Conservatives

(1)

when they spent more and (2) when they spent less than their opponents,

and hence say whether you consider the above figures evidence of the influence

of expenditure on election results or no. (Note that if the one candidate iri a

contest be a Conservative-winner-who spends more than his opponent—the

other must necessarily he a Libeml-loser-who spends less— %,nd so forth.

Hence the case is one of complete equality of contraries.

)

10. Given that (A)JN-(B)IN=(C)IN=x, and that (AB)IN^AG)IN^y}

find the major and minor limits to y that enable one to infer positive associa-

tion between B and (7, i.e. (BO)jN>x 2
.

Draw a diagram on squared paper to illustrate your answer, taking x and y
as co-ordinates, and shading the limits within which y must lie in order to

permit of the above inference. Point out the peculiarities in the case of in-

ferring a positive association from two negative associations.

11. Discuss similarly the more complex case (A)/N=x, (B)jN—2x, (C)jN=
3#:— ''

i; :

(1) for inferring positive association between B and G given (AB)/N=
(A G)/N= y.

(2) for inferring positive association between A and C given
(AB)jN=

(BC)/N~y.
(3) for inferring positive association between A and B given (AG)/N==

(BG)/N~y.



CHAPTER V.

MANIFOLD CLASSIFICATION.

1. The general principle of a manifold classification—2-4. The table of

double-entry or -contingency table and its treatment by fundamental
methods—5-8. The coefficient of contingency—9-10. Analysis of

a contingency table by tetrads—11-13. Isotropic and anisotropic

distributions—1 4-15. Homogeneity of the classifications dealt with

in this and the preceding chapters : heterogeneous classifications.

1. Classification by dichotomy is, as was briefly pointed out in

Chap. I. § % a simpler form, of classification than usually occurs

in the tabulation of practical statistics. It may be regarded as

a special case of a more general form in, which the individuals or

objects observed are first divided- under, say, s heads, A
1 ,

'A# each of the classes so obtained then subdivided under t heads,

Bv Be, .... Bh each of these under u heads, Cv (72 .
, . . Cui and

so on; thus giving rise to s. t. u. . . . . ultimate classes altogether.

2. The general theory of such a manifold as distinct from a

twofold ov dichotomous classification, in the case of n attributes

or characters ABC . . M, would be extremely complei : in the

present chapter the discussion will be confined to the case of two
characters, A and B, only. If the classification of the A’s be &
fold and of the B’s Mold, the frequencies of the st classes of the

second order may be most simply given by forming a table with

s columns headed A
x
to A„ and t rows headed BY to B

t
. The

number of the objects or individuals possessing any combination

of the two characters, say Am and Bm i.e. the frequency of the

class AmBn,
is entered in the compartment common to the mth.

column and the nth row, the st compartments thus giving all

the second-order frequencies.
f.

The totals at the ends of rows

and the feet of columns give the first-order frequencies, i.e. the

numbers of Am
’

s and Bn
’

s, and finally the grand total at the

right-hand bottom corner gives the whole number of observations.

, Tables I. and II. below will serve as illustrations of such tables

| of dopble-entry or contingency tables, as they have been termed
- by Professor Pearson {ref. IV
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3. In Table I. the division is 3 x 3-fold ; the houses in England
and Wales are divided into those which are in (1) London, (2)

other urban .districts, (3) rural districts, and the houses in each
of these divisions are again classified into (!) inhabited houses,

(2) uninhabited blit completed houses, (3) houses -that are

“Jbuilcling,” i.e. in course of erection. Thus from the first row
we see that there were in London, in round numbers, 616,000
houses, of which 571,000 were inhabited, 40,000 uninhabited,

-and 5000 in course of erection : from the first column, there

were 6,260,000 inhabited houses in England and Wales, of which
571.000 were in London, 4,064,000 in other urban districts, and
1.625.000 in rural districts.

Table I.—Houses in England and Wales. {Census of 1901.

Summary Table X. ) (000’s om itted.

)

-*

Inhabited.

...

Unin-'

habited.
Building. ~ Total.

Adm. County of London 571 40 5 616
Other urban districts . 4061 285. 45* 4394
Rural districts . , .

.

! 1625 •124 12 . 1761

Total for England and Wales 6260
j

449 "
/ 62 6771

In Table II., on the other hand, the classification is 3 x 4-fold :

the eye-colours are classed under the three heads “ blue,” “ grey or

green,” and “ brown-,” while the hair-colours are classed under

four heads, “
fair,” “brown,” “ black,” and “red.” The table is

Table II.

—

Hair- and Eye-Golours of 6800 Males in Baden.
{Ammon, Zur Anthroyologie der Badener

,

)

Eye-colour.

Hair-colour.

Total.

Fair. Brown.
'

Black. Red.

Blue . . . .
. 1768 807

.

189 47 2811

Grey or Green . . 946 1387 746 53
|

3132

Brown . 115
..

438 288 16
|

857

|

Total . 2829 2632 1223 116
!

6800

...
•

• >
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read similarly to the last. Taking the first row, it tells us that

there were 2811 men with blue eyes noted, of whom 1768 had
fair hair, 807 brown hair, 189 black hair, and 47 red hair.

Similarly, from the first column* there were 2829 men with fair

hair, of whom 1768 had blue eyes, 946 grey or green eyes, and
115 brown eyes. The tables are a generalised form of the four-

fold (2 x 2-fold) tables in § 13, Chap. III.

4. For the purpose of discussing the nature of the relation

between the A’s and the any such table may be treated on
the principles of the preceding chapters by reducing it in different

ways to 2 x 2-fold form. It then becomes possible to trace the

association between any one or more of the A }

s and any one or

more of the B’s, either in the universe at large or in universes

limited by the omission of one or more of the A ?

s, of the B% or

of both. Taking Table I., for example, trace the association

between the erection of houses and the urbaij character of a

district. Adding together the first two rows—i,e. pooling London
and the other urban districts together—and similarly adding the

first two columns, so as to make no distinction between inhabited

and uninhabited houses as long as they are completed, we "find

—

Proportion of all houses which
j

are in course of erection in 50/5010 == 10 per thousand,

urban districts .

Proportion of all houses which
are in course of erection in

rural districts . . .

There is therefore, as might be expected, a distinct positive

association, a larger proportion of houses being in course of

erection in ^.rban than in rural districts.

If, as another illustration, it be desired to^ trace the association

between the “ uninhabitedness ” of houses and the urban character

of the district, the procedure will be rather different. Lows 1

and 2 may be added together as before, but column 3 may. be
omitted altogether, as the houses which are only in course of

erection do not enter into the question. We then have

—

Proportion of all houses which
)

are uninhabited in urban > 325/4960 — 66 per thousand,

districts . . . . )

Proportion of all houses which 1

are uninhabited in rural > 124/1749 = 71 „
districts . , . )

The association is therefore negative, the proportion of houses
uninhabited being greater ixi rural than in urban districts.

f

12/1761= 7
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The eye- and hair-colour data of Table II. may be treated in a

precisely similar fashion. If, e.g;, we desire to trace the associa-

tion between a lack of pigmentation in' eyes and in hair, rows 1

, and 2 may *be pooled together as representing the least pigmenta-

tion of the eyes, and columns 2, 3, and 4 may be pooled together

as representing hair with a more or less marked degree of

pigmentation. We then have

—

P
Trtdr

°f

.

ligh
!'
eyed WUh

}
2714/5943 = 46 per cent.

'

Proportion of brown-eyed with
( 115/357 _ 13

The association is therefore well-marked.# For comparison we
may trace the corresponding association between the most marked
degree of pigmentation ip eyes and hair, i.e. brown eyes and
black hair. Hgre we must add together rows 1 and 2 as before,

and columns 1, 2, and 4—the column' for red being really mis-

placed, as red represents a comparatively slight degree of pigmenta-

tion. The figures are— .

'

_ ;
.

Pl

’bkckZi°
f br°Wa'eyed With

}
288/857 = 34 per cent.

Pr
bkck

0

halr

f Hght'eyed With

}
935/5943 = 16 „

The association is again positive and well-marked, but the

difference between the two percentages is rather less than in the

last case.

5; The mode of treatment adopted in the preceding section rests

on first principles, and, if fully carried out, it gives the most detailed

information possible with regard to the relations of t^e two attri-

butes. At the same time a distinct need is felt in practical work for

some more summary method—a method which will enable a single

and definite answer to be given to such a question as—Are the

A/s on the whole distinctly dependent on the B’s; and if so, is this

dependence very close, or the reverse? The subject of coefficients

of association, which affords the answer to this question in the

case of a dichotomous classification, was only dealt with briefly

and incidentally, for it is still the subject of some controversy

:

further, where there are only four classes of the second order

to be considered the matter is not nearly so complex as where

the number is, say, twenty -five or more, and the need for

any summary coefficient is not so often nor so keenly felt. The
ideas on which Professor Pearson’s general measure of de-

pendence, the “coefficient of contingency,” is based, are, more-

over, quite simple and fundamental, and the mode of calculation
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is therefore given in full in the following section. The advanced

student should refer to the original memoir (ref. 1) for a completer

treatment of the theory of the coefficient, and of its relation to

the theory of variables. wh'S; *

6.’ Generalising slightly the notation ,of the preceding chapters,

let the frequency of be denoted by (Am), the frequency of

by (Yi
rt ), and the frequency of objects or individuals possessing

both characters by (A mBn). Then, if the A ' s and BA be com-

pletely independent in the universe at large, we must have for all

values of m and n— y" "
..

' '

,

(AmBn
)JA-^~~(AmBn)0 . . . (1)

• ' " '

If, however, A and B are not completely independent,
(AmBn)

and
(AmB.n)0

will not be identical for all values of m and n. Let

the difference be given by :

w:"-
.

. :

Smn= (AmBn)-(AJ]n\
*

. . (2)

A coefficient such as we are seeking may evidently be based in

some- way on these values of & It will not do, however, simply to

add them together, for the sum of all the values of 8, some of

which are negative and others positive, must be zero in any case,

the sum of both the (AB)’s and the (AB)
0A being equal to the

whole number of observations N. It is necessary, therefore, to

get rid of the signs, and this may be done in two simple ways
: (1)

by neglecting them and forming the arithmetical instead of the

algebraical sum of the differences 8, or (2) by squaring the differ-,

enees and then summing the squares. The first process is the

shorter, but the second the better, as it leads to a coefficient

easily treated by algebraical methods, which the first process

does not: as the student will see later, squaring is very

usefully and very frequently employed for the purpose of elimin-

ating algebraical signs. Suppose, then, that every 8 is calculated,

and also the ratio of its square to the corresponding value of

(AJB)
0,

and that the sum of all such ratios is, say, y
2

;
or, in

symbols, using 2 to denote a the sum of all quantities like
’’

-

Being the sum of a series of squares, y
2 is necessarily positive,

and if A and Jibe independent it is zero, because every S is zero.

If, then, we form a coefficient G given by the relation
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this coefficient is zero if the characters 4 and B are completely
independent, and approaches more and more nearly towards
unity as y

2 increases. In general, no sign should be attached

to the root,* for the coefficient simply shows- whether the two
characters are or are not independent, and nothing more, but in

some cases a conventional sign may be used. Thus in Table II.

slight pigmentation of eyes and of hair appear to go together,

and the contingency may be regarded as definitely positive. If

slight •pigmentation of eyes had been associated with marked
pigmentation of hair, the contingency might have been regarded
as negative. G is Professor Pearson's mean square contingency
coefficient. 1

7. The coefficient, in the simple form (4), Jtas one disadvantage,

viz. that coefficients calculated on different systems of classi-

fication are not comparable with each other. It is clearly desir-

able for practical purposes that two coefficients calculated from
the same data classified in two different ways should be, at least

approximately, identical. With the present coefficient this is not
the case : if certain data be classified in, say, (1) 6 x 6-fold, (2)

3 x 3-fold form, the coefficient in the latter form tends
#
to be the

least. The greatest possible value of the coefficient is, in fact,

only unity if the number of classes be infinitely great
;
for any

finite number of classes the limiting value of C is the smaller the

smaller the number of classes. This may be briefly illustrated as

follows. Pmplacing 8mn in equation (3) by its value in terms of

UmK) and
(
Am£n)0

we have—

and therefore, denoting the expression in brackets by S,

'-/t • • • («>

Now suppose we have to deal with a t x *-fold classification in

which (Am) = (Bm)
for all values of m; and suppose, further, that

the association between Am and Bm is perfect, so that (AmBm)
—

(Am) = (Bm) for all values of m, the remaining frequencies of the -

second order being zero; all the frequency is then concentrated

in the diagonal compartments of the table, and each contributes

1 Professor Pearson (ref. 1) terms 8 a sub-contingency ; x
2 the square contin-

gency
;
the ratio Vs/

A

7
,
which he denotes by $2

,
the mean square contingency ;

and the sum of all the S’s of one sign only, on which a different coefficient can

be based, the mean contingency. *

5
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JV to the sum S. The total value of S is accordingly tAr
,
and tho

value of C—
G~\ t

This is the greatest possible value of C for a symmetrical t x tf-fojd

classification, and therefore, in such a table, for

—

t = 2 G cannot exceed 0*707

* = 3 „ „ 0*816

t— 4 ,, „ 0*866

* = 5 „ „ 0*894

£ = •6 „ „ 0*913

t— 7 „ „ 0*926

* = 8 „ „ 0*935

*= 9 „ „ 0*943 *
* = 10 „ „ 0*949

It is as well, therefore, to restrict the use of the u
coefficient of

contingency
”

to 5 x 5-fokl or finer classifications. At the same
time the classification must not be made too fine, or else the value

of the coefficient is largely affected by casual irregularities of no
physical significance in the class-frequencies (cf. the remarks in

Chap. III. §§ 7-8).

Table HI.

—

Independence- Values of the Frequencies for Table II.

^
Eye-colour. Fair. Brown. Black. Red,

Blue 1169 1088 506 48*0

Grey or Green . t ... 1303 1212 563 53*4

Brown ... 357
'

332 154 14*6

8. As the classification of Table II. is only 3 x 4~fold, it is rather

crude for the purpose of calculating the coefficient, but will serve

simply as an illustration of the form of the arithmetic. In Table

III. are given the values of the independence frequencies, 2829 x
2811/6860 = 1169 and so on. The value of x

2 is more readily

calculated from equation (5) than from (3) :

—
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(176S)2/1169 2673*9

(946)s/1303 686*8

(1 1

5

)
2/357 37*0

(807^/1088 598*6

(1387)2/1-212 1587*3

(438)s/332 577*8

(189)
2/506 70*6

(746)2/563 988*5

(288)2/154 538*6

(47)2/48-0 46*0

(53)2/53-4 52*6

(16)
2/14-6 ' 17*5

f

Total ~ S = 7875-2
.

Ar= 6800

S-JV-
'

1075-2 .:

. r / 1075-2

• V 7875-2
71365'= 0-37

The squares in such work may conveniently be taken from
Barlow’s Tables of Squares, Cubes, etc

. (see list of tables on

p. 356), or logarithms may be used throughout—five-figure
.

logarithms are quite sufficient.

9. While such a coefficient of contingency, in some form or

other, is a great convenience in many fields of work, its use

should not lead to a neglect of those details which a treatment by
the elementary methods of § 4 would have revealed. Whether
the coefficient be calculated or no, every table should always be
examined with care to see if it exhibit any apparently significant

peculiarities in the distribution of frequency, e.g. in the associa-

tions subsisting between Am and Bn in limited universes. A good
deal of caution must be used in order not to be misled by casual

irregularities due to paucity of observations in some compartments
of the table, but important points that would otherwise he over-

looked will often be revealed by such a detailed examination.

10. Suppose, for example, that any four adjacent frequencies,

say

—

{
A

r/l
Bn)

are extracted from the general contingency table. Considering

these as a table exhibiting the association between Am and Bn in

a universe limited to AmAm+1 BnBn+1 alone, the association is

positive, negative, or zero according as (AmBn)/(Am+1Bn)
is greater
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than, less than, or equal to the ratio (AmBn+l)/(A.m+ xBn+

x

). The
whole of the contingency table can be analysed into a series of

elementary groups of four frequencies like the above, each one

overlapping its neighbours so that an rs-fold ta'ble contains

(r- 1) (s - 1) such “tetrads,” and the associations in them all can

be very quickly determined by simply tabulating the ratios like

(A^^KK-hK), (AmBn+1)f(Am+1Bn+1 ), etc., or perhaps bette
r
r,

the proportions (AmBn)l{{A.mBn) + (AmJrXB,)}, etc., for every pair

of columns or of rows, as may be most convenient. Taking the

figures of Table II, as an illustration, and working from the

rows, the proportions run as follows :

—

For rows 1 arkl 2. For rows 2 and 3.

1768/2714 0-651 946/1061 0-892

807/2194 0-368 1387/1825 0-760

189/935 0-202 746/1034 0*721

47/100 0-470 53/69 * 0-768

In both cases the first three ratios form descending series, but
the fourth ^atio is greater than the second. The signs of the

associations in the six tetrads are accordingly—

+ + ~

.
+ + —

The negative sign in the two tetrads on the right is striking,

the more so as other tables for hair- and eye-colour, arranged in

the same way, exhibit just the same characteristic. But the

peculiarity will be removed at once if the fourth column be placed

immediately after the first : if this be done, i.e. if “red ” be placed

between “fair” and “brown ” instead of at the end of the colour-

series, the sign of the association in all the elementary tetrads

will be the same. The colours will then run fair, red, brown,

black, and this would seem to be the more natural order, consider-

ing the depth of the pigmentation.

11. A distribution of frequency of such a kind that the

association in every elementary tetrad is of the same sign

possesses several useful and interesting properties, as shown in

the following theorems. It will be termed an isotropic dis-

tribution.

(1) In an isotropic distribution the sign of the association is

the same not only for every elementary tetrad of adjacent frequen-

cies, but for every set of four frequencies in the compartments

common to turn roivs and two columns
,

e.g. (Am .hpBn),

(AmBn.j^), (Amj_pBn+g). r
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For suppose that the sign of association in the elementary

tetrads is positive, so that

—

* (AmBj)^Am+1Bn+j)>{Am^l
B^AmBnJ(.^) . . (

1
)

and similarly,

Then multiplying up and cancelling we have

(-dmBjj(Am+2-^n+l) (-dm^.2B,t^j(•^•m-^n+l)
' • * (*^)

That is to say, the association is still positive though the two
columns Am and Am+2 are no longer adjacent

(2) An isotropic distribution remains isotropic in whatever way
it may be condensed by grouping together adjacent rows or columns.

Thus from (1) and (3) we have, adding

—

%

(d»A)[(•^•m+A+l) *h > (-dm^«+l)[(-dm4-l-^«) d* (Aw+2-^»)J?

that is to say, the sign of the elementary association is unaffected

by throwing the (m-b l)th and (m -h 2)th columns intoxme.

(3) As the extreme case of the preceding theorem, we may
suppose both rows and columns grouped and regrouped until

only a 2 x 2-fold table is left
;
we then have the theorem—

If an isotropic distribution be reduced to a fourfold distribution

in any way whatever
,
by addition of adjacent rows and columns

,

the sign of the association in such fourfold table is the same as in

the elementary tetrads of the original t>able.

The case of Complete independence is a special case of isotropy.

For if

(AmBn) = {Am)(Bn)fF

for all values of m and n
,
the association is evidently zero for

every tetrad. Therefore the distribution remains independent
in whatever way the table be grouped, or in whatever way the

universe be limited by the omission of rows or columns. The
expression “ complete independence ” is therefore justified.

From the work of the preceding section we may say that Table

II. is not isotropic as it stands, but may be regarded as a dis-

arrangement of an isotropic distribution. It is best to rearrange

such a table in isotropic order, as otherwise different reductions

to fourfold form may lead to associations of different sign, though
of course they need not necessarily do so.

12. The following will serve as an illustration of a table that

is not isotropic, and cannot be rendered isotropic by any rearrange-

ment of the order of rows and column^.
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Table IV.—Showing the Frequencies of Different Combinations of
Eye-colours in Father and 'Eon,

(Data of Sir F. Galton, from Karl Pearson, Phil. 'Frans., Av vol. cxov.

(1900), p. 138 ;
classification condensed.)

1. Blue. 2. Blue-green, grey. 3. Dark grey, hazel. 4. Brown,

•/kk:': '• Fat

i

i kb’s Eye-colour.

1 . ,2. 3. 4. Total.

1 194 70 41

,

.:•

30 335
2 P 124 41 36 284

3 25 34 55 23 137

4 66 36 43 109 244

Total 358 264 180 198
r

1000

i

The following are the ratios of the frequency in column m to

the sum of the frequencies in columns m and m + 1 :

—

1 and 2.

Columns

2 and 3. 3 and 4.

0-735 0-631 0-577

0*401 0-752 0*532

0-424 0-382 0-705

0*609 0-456 0-283

The order in which the ratios run is different for each pair of

columns, and it is accordingly impossible to make the table

isotropic. The distribution of signs of association in.the several

tetrads is

—

+ ~ +
- +

The distribution is a curious one, the associations in tetrads

round the diagonal of the whole table being so markedly positive

and those in the immediately adjacent tetrads equally markedly
negative. Neglecting the other signs, this is the effect that

would be produced by taking an isotropic distribution and then
increasing the frequencies in the diagonal compartments by a

sufficient percentage. Comparison of the given table with others

from the same source shews that the peculiarity is common to
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the great majority of the tables, "-and accordingly its origin

demands explanation. Were such a table treated by the method
of the contingency coefficient, or a similar summary method,
alone, the peculiarity might not be remarked.

13. It may be noted, in concluding this part of the subject,

that in the case of complete independence the distribution of

frequency in every row is similar to the distribution in the row
of totals, and the distribution in every column similar to that in

the column of totals
; for in, say, the column An the frequencies

are given by the relations—

and so on. This property is of special importance in the theory

of variables.

14. The classifications both of this and of the preceding chapters

have one important characteristic in common, viz. that they
are, so to speak, “homogeneous”—the principle of division

being the same for all the sub-classes of any one class. Thus
A :

& and a’s are both subdivided into and (3% A^s, AJs . . . .

M/s into B-ls, i?
2
V. . . , B}s, and so on. Clearly this is necessary

in order to render possible those comparisons on which the

discussions of associations and contingencies depend. If we-

only know that. amongst the A’s there is a certain percentage

of 3% and amongst the a
5

s a certain percentage of C’s, there

are no data for any conclusion.

Many classifications are, however, essentially of a heterogeneous

character, e.g . biological classifications into orders, genera, and
species; the classifications of the causes of death in vital

statistics, and of occupations in the census. To take the last

case as an illustration, the first “order” in the list of occupations

is “General or Local Government of the Country,” subdivided

under the headings (1) National Government, (2) Local Govern-

ment. The next order is “ Defence of the Country,” with the sub-

headings (1) Army, (2) Navy and Marines—not (1) National

and (2) Local Government again—the sub-heads are necessarily

distinct. Similarly, the third order is “ Professional Occupations

and their Subordinate Services,” with the fresh sub-heads (1)

Clerical, (2) Legal, (3) Medical, (4) Teaching, (5) Literary and
Scientific, (6) Engineers and Surveyors, (7) Art, Music, Drama,

(8) Exhibitions, Games, etc. The number of sub-heads under

each main heading is, in such a case, arbitrary and variable,

and different for each main heading
;

hut so long as the

classification remains purely heterogeneous, however complex
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it may become, there is no opportunity for any discussion

of causation within the limits of the matter so derived. It is

only when a homogeneous division is in some way, introduced

that we can begin to speak of associations and contingencies.

15. This may be done in various ways according to the

nature of the case. Thus the relative frequencies of different

botanical families, genera, or species may be discussed in

connection with the topographical characters of their habitats

—

desert, marsh, or moor—and we may observe statistical associa-

tions between given genera and situations of a given topographical

type. The causes of death may be classified according to sex,

or age, or occupation, and it then becomes possible to discuss

the association of a given cause of death with one or other

of the two sexes, with a given age-group, or with a given

occupation. Again, the classifications of deaths and of occupations

are repeated at successive intervals of time; and if they have

remained strictly the same, it is also possible to 'discuss the

association of a given occupation or a given cause of death with

the earlier or later year of observation

—

Le. to see whether the

numbers of ithose engaged in the given occupation or succumbing
to the given cause of death have increased or decreased. But
in such circumstances the greatest care must be taken to see

that the necessary condition as to the identity of the classifications

at the two periods is fulfilled, and unfortunately it very

seldom is fulfilled. All practical schemes of classification are

subject to alteration and improvement from time to time, and
these alterations, however desirable in themselves, render a
certain number of comparisons impossible. Even wher$ a
classification has remained verbally the same, it is not necessarily

really the ^ame; thus, in the case of the causes of death,

improved methods of diagnosis may transfer many deaths from
one Heading to another without any change in the incidence

of the disease, and so bring about a virtual change in the

classification. In any case, heterogeneous classification should
be regarded only as a partial process, incomplete until a
homogeneous division is introduced either directly or indirectly,

e.g . by repetition.
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EXERCISES.

(1) (Data from Karl Pearson, “ On the Inheritance of the Mental and Moral
Characters in Man,” Jour, of the Anthrop. Inst. , vol. xxxiii., and Biometrika

,

vol. iii.) Find the coefficient of contingency (coefficient of mean square

contingency) for the two tables below, showing the resemblance between

brothers for athletic capacity and between sisters for temper. Show that

neither table is even remotely isotropic. (As stated in § 7, the coefficient of

contingency should not as a rule be used for tables smaller than 5 x 5-fold;

these small tables are given to illustrate the method, while avoiding lengthy

arithmetic.

)
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A. Athletic Capacity.

First Brother.

Athletic. Betwixt.
Non-

athletic.
Total.

Athletic ... 906 20 140

—r_

1066

Betwixt . . 20 76 9 105
Non-athletic . 140 9 370

|

519

Total . 1066 105 519 1690

B. Temper.

First Sister .

Quick.
Good-

natured.
Sullen. Total.

—9

Quick •. ... . 198 177 77 452
Good-natured 177 996 165 1338
Sullen . . . . 77 165 120

|

362

Total 452 1338 862 2152



PART II.—THE THEORY OF VARIABLES.

CHAPTER VI.
~

: 4

THE FREQUENCY-DISTRIBUTION.

1. Introductory— 2. Necessity for classification of observations : the frequency
distribution—3. Illustrations—4. Method of forming the table—5.

Magnitude of class-interval—6. Position of intervals—7. Process of

classification—8. Treatment of intermediate observations— 9. Tabula-
tion—10. Tables with unequal intervals— 11. Graphical representa-

tion of the frequency-distribution— 12. Ideal frequency-distributions
—13. The symmetrical distribution—14. The moderately asymmetri-
cal distribution—15. The extremely asymmetrical or J-shaped dis-

tribution—16. The U-shaped distribution.

1. The methods described in Chaps. I.-V. are applicable to all

observations, whether qualitative or quantitative
;
we have now

to proceed to the consideration of specialised processes, definitely

adapted to the treatment of quantitative measurements, but not

as a rule available (with some important, exceptions, as suggested

by Chap. I. § 2) for the discussion of purely qualitative observa-

tions. Since numerical measurement is applied only in the case

of a quantity that can present more than one numerical value,

that is, a varying quantity, or more shortly a variable, this section

)
of the work may be termed the theory of variables. As common
examples of such variables that are subject to statistical treat-

ment may be' cited birth- or death-rates, prices, wages, barometer

readings, rainfall records, and measurements or enumerations (e.g,

of glands, spines, or petals) on animals or plants.

. 2. If some hundreds or thousands of values of a variable have

been noted merely in the arbitrary order in which they happened

to occur, the mind cannot properly grasp the significance of the

record: the observations must be ranked or classified in some
way before the characteristics of the series can be comprehended,

and those comparisons, on which arguments as to causation

depend, can be made with other series. The dichotomous classi-

75 ^ .

,
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fication, considered in Chaps. I.-IY., is too crude : if the values are

merely classified as A’s or a’s according as they exceed or fall

short of some fixed value, a large part of the information given

by the original record is lost. A manifold classification, however

(cf. Chap. V.), avoids the crudity of the dichotomous form, since

the classes may be made as numerous as we please, and numerical

measurements lend themselves with peculiar readiness to a

manifold classification, for the class limits can be conveniently

and precisely defined by assigned values of the variable.* For

convenience, the values of the variable chosen to define the

successive classes should be equidistant, so that the numbers of

observations in the different classes (the class-frequencies) may be

comparable. Thus lor measurements of stature the interval

chosen for classifying (the class-interval, as it may be termed)

might be 1 inch, or 2 centimetres, the numbers of individuals

being counted, whose statures fall within each successive inch, or

each successive 2 centimetres, of the scale; returns of birth- or

death-rates might be grouped to the nearest unit per thousand

of the population; returns of wages might be classified to the

nearest shilling, or, if desired to obtain a more condensed table,

by intervals of five shillings or ten shillings, and so on. When
the variation is discontinuous, as for example in enumerations

of numbers of children in families or of petals on flowers, the

unit is naturally taken as the class-interval unless the range of

variation is very great. The manner in which the observations

ire distributed over the successive equal intervals of the _ scale is

spoken of as the frequency-distribution of the variable.

3. A. few
.
illustrations will make clearer the nature of such

frequency-distributions, and the service which they render in

summarising a long and complex record :

—

(a) Table L In this illustration the mean annual death-rates,

expressed as proportions per thousand of " the population per

annum, of the 632 registration districts of England and Wales,

for the decade 1881-90, have been classified to the nearest unit;

Le. the numbers of districts have been counted in which the

death-rate was over 12 5 but under 13*5, over 13*5 but under
14*5, and so on. The frequency-distribution i»s shown by the

following table.

[Table I.
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Table I.—Showing the Members of Registration Districts in England and
Wales with, Different mean Death-rates per Thousand of the Population

per Annum for the Ten Tears 1881-90. (Material from the Supplement
to the 53th Annual Report of the Registrar-General for England and
Wales [0.—7769] 1895.)

•Mean Annual
Death-rate,

Number of

Districts with
Death-rate

between Limits

stated.

Mean Annual
Death-rate.

Number of

I

Districts with

|

Death-rate

i between Limits
stated.

12*5-13*5 5 23*5-24*5* 5
13*5-14*5 16 24*5-25*5 3
14*5-15*5 61 25*5-26*5 1

15*5-16*5 112 26*5-27*5 1

16*5-17*5. 159 27*5-28*5 2
17*5-18*5 104 28*5-29*5

18*5-19*5 67 29*5-30*5

19*5-20*5 42 30*5-31*5 2
20*5-21*5 25 31*5-32*5

"i21*5-22*5 18 32*5-33*5

22*5-23*5 8

Total 632

Whilst a glance through the original returns fails to convey

any very definite impression, owing to the large -and erratic

differences between the death-rates in successive districts, a brief

inspection of the above table brings out a number of important
points. Thus we see that the death-rates range, in round
numbers, from 13 to 33 per thousand per annum, Jout in the

great majority of districts lie nearer the lower limit than the

upper
;
that the death-rates in some 60 per cent, of the districts

lie within the narrow limits 15*5 to 18*5, the rates, being most
.frequent near 17 per thousand, and so forth.

(b) Table II. The ages at death, in years, of the married

women in certain Quaker families were recorded and classified in

5-year groups according as they were over 17*5 but under 22*5,

over 22*5 but under 27*5, and so on. The frequency-distribution

was as follows

[Table II.
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Table II ,—Showing the Numbers of Married Women
,
in certain Qua,leer

Families, Dying at Different Ages. (Cited from Proc. Koy.Soc vol. lxvii,

(1900), p. 172. On the Correlation between Duration of Life and Number

of Offspring, by Miss M. Beetoil, Karl Pearson, and G. U. Yule.)

Age at Death,
Years.

Number of

Women Dying
between

said Years
of Age.

Age at Death,

Years.

Number of

Women Dyiin

between
said Years
of Age.

17*5-22*5 29 62*5- 67*5 73
22*5-27*5 87 67*5- 72*5

|

S3
27*5-32*5 99 72*5- 77*5 77
32*5-37*5 109 77*5- 82*5 78
37*5-42*5

|

• 90 82*5- 87*5 59
42*5-47*5 87 S7*5~ 9*2*5

i 26
47*5-52*5 64 92*5- 97*5 7
52*5-57*5 54 97*5-102*5 4

57*5-62*5 69

Total
*
1095

The distribution is somewhat more irregular than in the last

ease; the commencement is abrupt.;. a maximum frequency is;

attained in the fourth class (age at death 32*5 to 37*5), and then

there is a slow fall to the age-class 52*5-57*5. After this class .

the frequency rises again and attains a secondary maximum in

the age-class 67*5-72*5.

(c) Table III. The numbers of stigmatic rays on a number
of Shirley poppies were counted. As the range of variation is

not great, the unit is taken as the class-interval. The frequency-

distribution is given by the following table.

Table III .—Showing the Frequencies of Seed Capsules on certain Shirley

Poppies
,

with Different Numbers of Stigmatic Hays. (Cited from
Biometrika

,
ii, p. 89, 1902.) -

Number of

Stigmatic

Kays.

Number of

Capsules

with said

Number of

Stigmatic Rays.

Number of

Stigmatic

Kays.

Number of -

Capsules

with said

Number of

Stigmatic Rays.

6 3 14 302
7 11 15 234
8 38 16 128
9 106 17 50

10 152 18 19
11 238 19 3

• 12 305 20 1

13 315
hSy-;, I/;,':: ®. Total 1905

%
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The numbers of rays range from 6 to 20,—12, 1*3, or 14 rays

being the most usual.

4. To expand slightly the brief description given in § 2, tables

like the preceding are formed in the following way:— (1) The
magnitude of the class-interval, i.e. the number of units to each

interval, is first fixed
; one unit was chosen in the case of Tables

I*and III., five units in the ease of Table II. (2) The position or

origin of the intervals must then be determined, e.g. in Table I.

we must decide whether to take as intervals 12-1 3, .13-14, 14-15,

etc., or 12-5-13*5, 13*5-14-5, 14*5-15-5, etc. (3) This choice

having been made, the complete scale of intervals is fixed, and the

observations are classified accordingly. (4) The process of

classification being finished, a table is drawer up on the general

lines'of Tables I.-IIL, showing the total numbers of observations

in each class-interval. Some remarks may be made on each of

these heads.

5. Magnitude of Class-Interval ,—As already remarked, in cases

where the variation proceeds by discrete steps of considerable

magnitude as compared with the range of .variation, there is very
little choice as regards the magnitude of the class-interval. The
unit will in general have to serve. But if the variation be con-

tinuous, or at least take place by discrete steps which are small

in comparison with the whole range of variation, there is no such
natural class-interval, and its choice is a matter for judgment.
The two conditions which guide the choice are these: (a) we

desire to be able to treat all the values assigned to any one class,

without serious error, as if they were equal to the mid-value

of the class-interval, e.g . as if the death-rate of every district in

the first class of Table I. were exactly 13*0, the death-rate of

every district in the second class 14*0, and so on; (b) for con-

venience and brevity we desire to make the interval as large as

possible, subject to the first condition. These conditions will

generally be fulfilled if the interval be so chosen that the whole

number of classes lies between 15 and 25. A number of classes

less than. ..sasy ten leads in general to very ap)^reckbleJnacc_iimcy. J

and a number overlay, ... unwieldy

Table. A preliminary inspection of the record should accordingly

"be made and the highest and lowest values be picked out.

Dividing the difference between these by, say, five and twenty, we
have an approximate value for the interval The actual value

should be the nearest integer or simple fraction.

6. Position of Intervals .—The position or starting-point of the
- intervals is, as a rule, more or less indifferent, but in general it

is fixed either so that the limits of intervals are integers, or, as in

Tables I. and, II., so that the mid-values are integers. It may,
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however, be chosen, for simplicity in classification, so that no

limit corresponds exactly to any recorded value (cf. § 8 below). In

some exceptional cases, moreover, the observations exhibit a marked
clustering round certain values, e.g. tens, or tens and.fives. This

is generally the case, for instance, in age returns, owing to the

tendency to state a round number where the true age is unknown.
Under such circumstances, the values round which there is«a

marked tendency to cluster should preferably be made mid-values

of intervals, in order to avoid sensible error in the assumption that

the mid-value is approximately representative of the values in the

class. Thus, in the case of ages, since the clustering is chiefly round

tens, “ 25 and under 35,” “ 35 and under 45,” etc., the classification

of the English census, is a better grouping than “20 and under
30,” “ 30 and under 4*0,” and &o on (cf. the Census of England and
Wales

, 1911, vol. vii., and also ref. 5, in which a different view is

taken). When there is any probability of a clustering of this kind

occurring, it is as well to subject the raw material to a close

examination before finally fixing the classification.

7. Classification.—The scale of intervals having been fixed, the

observations may be classified. If the number of observations is

not large, ft will be sufficient to mark the limits of successive

intervals in a column down the left-hand side of a'sheet of paper,

and transfer the entries of the original record to this sheet by
marking a 1 on the line corresponding to any class for each entry

assigned thereto. It saves time in subsequent totalling if each

fifth entry in a class is marked by a diagonal across the preceding

four, or by leaving a space.

The disadvantage in this processes that it offers no facilities for

checking: if a repetition of the classification leads to a different

result, there is no means of tracing the error. If the number of

observations is at all considerable and accuracy is essential, it is

accordingly better to enter the values observed on cards, one to

each observation. These are then dealt out into packs according

to their classes, and the whole work checked by running through
the pack corresponding to each class, and verifying that no cards

have been wrongly sorted.

8. In some cases difficulties may arise in classifying, owing to

the occurrence of observed values corresponding to class-limits.

Thus, in compiling Table I., some districts will have been noted

with death-rates entered in the Registrar-GeneraFs returns as

16-5, 17*5, Or 18*5, any one of which might at first sight have
been apparently assigned indifferently to either of two adjacent

classes. In such a case, however, where the original figures for

numbers of deaths and population are available, the difficulty may
be readily surmounted by working out the rate to another place
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1

of decimals : if the rate stated to be 16*50 proves to be 16*502, it

will be sorted to the class 16*5-17*5 * if 16*498, to the class

15*5-16*5. Death-rates that work out to half-units * exactly do
not occur in*this example, and so there is no real difficulty. In

the case of Table II, again, there is no difficulty : if the year of

birth and death alone are given, the age at death is^only calcul-

able to the nearest unit
;

if the actual day of birth and death be

cited, half-years still cannot occur in the age at death, because

there is' an odd number of days in the year. The difficulty may
always be avoided if it be borne in mind in fixing the limits

to class-intervals, these being carried to a further place of decimals,

or a smaller fraction, than the values in the original record. Thus
if statures are measured to the nearest centimetre, the class-

intervals may be taken as 150*5-151*5, 151*5-152*5, etc.
;

if to

the nearest eighth of an inch, the intervals may be 59Jf-60$!>
60j 61-J-j, and so on.

If the difficulty is not evaded in any. of these ways, it is

usual to assign one-half of an intermediate observation to each

adjacent class, with the result that half-units occur in - the

class-frequencies (cf. Tables VII, p. 90, X., p. 9§, and XT.,

p. 96). The procedure is rough, but probably good enough for

practical purposes
; ijb would be slightly better,, but a good deal

..

more laborious, to assign the intermediate observations to the „

adjacent classes in proportion to the numbers of other. observations

falling into the two classes.

9. Tabulation.—As regards the actual drafting of the final

table, there is little to be said, except that care should be taken

to express the class-limits clearly, and, if necessary, to state the

manner in which, the difficulty of intermediate values, has been

met or evaded. The class-limits are perhaps best ofiven as in

Tables I. and II., but may be more briefly indicated by the mid-

values of the class-intervals. Thus Table I. might have been

given in the form— ..

Ily

Death-rate per 1000

per annum to the,

Nearest Unit.

Number of

Districts with
said Death-rate.

A common mode of - defining the class-intervals is to state the

limits in the form a x and less than In *'
.of measure-

ments of stature, for example, the table m^Uowing_
• y . 6
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Stature in Inches.
Number of

Observations.

57 and less than 58 2

58 „ „ 59 4

59 „ „ 60 14

etc. etc.

—the statemen t “ 57 and less than 58,” etc., being often abbreviated

to 57-, 58-, 59-, etc. (cf. Table VI., p. 88). The. mode of grouping

/is, in. effect, that described in the last paragraph as of service in

avoiding intermediate observations, but it should be noted that the

form of statement leaves the class-limits uncertain unless the degree

of accuracy of the measurements is also given. Thus, if measure-

ments were taken to
# the nearest eighth of an inch, the class-

limits are really 57yf, 57y-|-58-}f, etc. ; if they were

only taken to the nearest quarter of an inch, the limits are 56|-

~57f, 57|—58|, etc. With such a- form of tabulation a state-

ment as to the number' of significant figures in the original

record is therefore essential. It is better, perhaps, to state the

trim class-limits and avoid ambiguity.

/MO. The ^ule that class-intervals should be all equal is one

that is very frequently broken in official statistical publications,

principally in order to condense an otherwise unwieldy table,

L thus not only saving space in printing but also considerable

expense in compilation, or possibly, in the case of confidential

figures, to avoid' giving a class which would contain only one or

two observations, the,, identity of which might be guessed. It

would hardly be legitimate, for example, to give a return of

incomes relating to a limited district in such a form that the

income of the two or three wealthiest men in the district would
be clear to

rany intelligent reader with local knowledge. If the

intervals be made unequal, the application of many statistical

methods is rendered awkward, or even impossible, and the

relative values of the frequencies are at first sight misleading, so

that the table is not perspicuous. Thus, consider* the first two
columns of Table IV., showing the numbers of dwelling-houses

of different annual values, assessed to inhabited house duty. On
running the eye down the column headed “number of houses ” it

is at once caught by the two striking irregularities at the classes

“ £60 and under £80,
55 and “ £100 and under £150.” But these

have no real significance ; they are merely due to changes from
a £10 to a £20, and then to a £50 interval. Moreover, the

intervals after £150 go on continuously increasing, but attention

is not directed^A»nto by any marked changes in the frequencies.

To make the 0̂lln ^ec^ LJly comparable inter se, they must first be
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"*

Table IY.

—

-Showing the Annual Value and Number of Dwelling-homes in

Great Britain assessed to Inhabited House Duty in 1885-6. (Cited from

Jour. Bog. Btat. Soe., vol. 1., 1887, p. 610.)

Annual Value in £’s.
j

Frequency
per £10
Interval.

•

•

, j

£20 and under £30 '

30 „ 40
|

40 „ 50
!

50 ,, 60

60 ,, 80

80 „ 100

100 „ 150

150 ,, 300

300 ,, 500 i

500 ,, 1000
1000 and upwards

Total number of houses

306,408
182,972
105,407

63,096
71,436

32,365 .

41,336

26,732

6,198

2,098
644

306,408 .

182.972

105,407

63,096

|

35,71S

16,182

|

8,267

|

1.782

I

310
42

?

838,692 —

reduced to a common interval as basis, e.g. £10, bv dividing the

fifth and sixth numbers by 2, the seventh by 5, the eighth by 15,

and so on. This gives the mean frequencies per £10 interval

tabulated in the. third column of Table IY. The reduction is,

however, impossible in the case of the last class, for we are only

told the number of houses of £1000 annual value and upwards

:

the magnitude of the class is indefinite. Such an indefinite class

is in many respects a great inconvenience, and should always be

avoided in work not subject to the necessary limitations of

official publications. *

The general rule that intervals should be equal must not be
held to bar the analysis by smaller equal intervals of some
portion of the range over which the frequency varies very

rapidly. In Table XII., p. 98, for example, giving the numbers
of deaths from diphtheria at successive ages, a five-year interval

might be substituted with advantage for the irregular intervals

after the fifth year of age, but it would still be desirable to give

the numbers of deaths in each year for the first five years, so as

to bring out the rapid rise to the maximum in the fourth year

of life.

11. When the table has been completed, it is often convenient

to represent the frequency-distribution by means of a diagram
which conveys the general run of the observations to the eye

better than a column of figures. The following short table,.
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giving the distribution of head-hreadths for 1000 men, will' serve

as an example. '
.

Table Y. —Showing the Frequency-distribution of Head-breadthsfor Students

at Cambridge. Measurements taken to the nearest tenth of an inch.

(Cited from W. B. Macdonell, Mometrika, i., 1902, p. 220.)

Head-breadth
in Inches.

Number of

Men with said

Head-breadth.

Head-breadth
in Inches.

Number of

Men with said

Head-breadth.

5*5 3 6 *3 99

. 5 6 • 12 6*4 37

57 43 6*5 15

,

5-8 80 6*6 12
5-9 131 67 3

6*0 236 6*8 2
6*1 185 —
6*2 142 Total 1000

Taking a piece of squared paper ruled, say, in inches and tenths,

mark off along a horizontal base-line a scale representing class-

intervals; a half-inch to the class-interval would he suitable.

Then choose a vertical scale for the class-frequencies, say 50

observations per interval to the inch, and mark off, on the

verticals or ordinates through the points marked 5*5, 5*6, 5*7

. , . . at the centres of the class- intervals on the base-line, heights

representing on this scale the class-frequencies 3, 12, .43. . . .

The diagram may then be completed in one of two ways
: (1)

as a frequency polygon, by joining up the marks on the ver-

ticals by straight lines, the last points at each end being joined

down to the base at the centre of the next class-interval (fig. 1)

;

or (2) as a column diagram or histogram (to use a term sug-

gested by Professor Pearson, ref. 1), short horizontals being drawn
through the marks on the verticals (fig. 2), which now form the

central axes of a series of rectangles representing the class-

frequencies. The student should note that in any such diagram, 1

of either form, a certain area represents a given number off

observations. On the scales suggested, 1 inch on the horizontal :

represents 2 intervals, and 1 inch on the vertical represents 50
observations per interval : 1 square inch therefore represents *

50 x 2 = 100 observations. The diagrams are, however, con-
ventional : the whole area of the figure is correct in either case,

but the area oyer each interval is not correct in the case of the
frequency-polygon, and the frequency of each fraction of any
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Head, b

Fig. 1.—Frequency-Polygon for

Students.

1000 Cambridge

Head, breadth, i/b inches.

Fig. 2.—Histogram for the same data as Fig. 1
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interval is not the same, as suggested by the histogram. The

area shown by the frequency-polygon over any interval with an

ordinate y2
(fig. 3) is only correct if the tops of the three

successive Ordinates yv y2) y% lie on a line, %e. if y2 = \(yl 4- y3),

the areas of the two little triangles shaded in the figure being

equal. If y2
fall short of this value, the area shown by the

Fig. 4.

polygon is too great; if y2
exceed it, the area shown by the

polygon is too small; and if, for this reason, the frequency-,
polygon tends to become very misleading at any part of the
range, it is better to use the histogram. In the mortality dis-

' tributipn Table I., for instance, the frequency rises so sharply
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to the maximum that a histogram is, on the whole, the better re-

presentation of the distribution of frequency, and in such a

listribution. as that of Table LY. the use of the histogram is

alii st iiii I t nri\ '..'.YY.-' i.
.

:

12. If the class-interval, he, made smaller and smaller, and at

tjie same time the number of observations be proportionately, in-

creased, so that the class-frequencies may remain finite, the

polygon and die histogram will approach more and more closely

to a >•!north curve, bndi an ideal limit to the frequency-polygon

or histogram is termed a frequency-curve. In this ideal frequency-

curve the area between any two ordinates whatever is strictly

proportional to the number of observations falling between the

corresponding values of the variable. Thus the number of

observations falling between the values x
1
and x2 of the variable

in fig. 4 will be proportional to the area of the shaded strip in the

figure
;

the number of observed values greater than a?2 will

similarly be given by the area of the curve to the right of the

ordinate through x
2,
and so on. When, in any actual case, the

number of'observations is considerable—say a thousand at least

—the run of the class-frequencies is generally* sufficiently

smooth to give a good notion of the form of the ideal distri-

bution; with small numbers the frequencies may present all

kinds of irregularities, which, most probably, have very little

significance (cf. Chap. XV. § 15, and § 18, Ex. iv.). The forms

presented by smoothly running sets of numerous observations

present an almost endless variety, but amongst these we notice

a small number of comparatively simple types, from which many
at least of the more complex distributions may be conceived as

compounded., For elementary purposes it is sufficient to consider

these fundamental simple types as four in number, the symmetri-

cal distribution, the moderately asymmetrical distribution, the

extremely asymmetrical or J-shaped distribution, and the U-shaped
distribution.

13. The symmetrical distribution
,
the class-frequencies decreasq

ing to zero symmetrically on either side of a central maximumJ

Fig. 5 illustrates the ideal form of the distribution.

Being a special case of the more general type described under
the second heading, this form of distribution is comparatively rare

under any circumstances, and very exceptional indeed in economic

statistics. It occurs more frequently in the case of biometric, more
especially anthropometric, measurements, from which the following

illustrations are drawn, and is important in much theoretical work.

Table VI. shows the frequency-distribution of statures for adult

males in the British Isles, from data published by a British

Association Committee in 1883, the figures being given separately
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Table VI,—Showing the Frequency-distributions of Statures /or Adult

Males horn in England^ Ireland
,
Scotland

,
and Wales. Final Report of

the Anthropometric Committee to the British Association. *{ Report, 1883,

p. 256.) As Measurements are stated to have been taken to the nearest
- jth of cm Inch

,
the Class-Intervals are here presumably 561§~57I£,

57d?;-58f£, and so on (<;/.§ 9). See Fig. 6. ^

Height without
shoes, Inches.

Number of Men within said Limits of Height.

Place of Birth— .

Total.

England.

r

Scotland. Wales. Ireland.

57- 1 1 2
58- 3 1 — -- 4

59- 12 — 1 1 14
60- 39 2 — — 41
61- 70 2 9 2 83

' 62- 128 9 30 2 169
63- 320 19 48

!

7 394
64- r

524 47 83 15 669
65- 740 109 108 33 990
66- - 881 139 145 58 1223
67-

i

918 210 128 73 1329
‘

' 68-
:

'

1 886 210 72 62 1230
69- 753 ' 218 52 40 1063
70-

. i

'

|

473 115 33 25 646
71- 254 102 21 15 392
72- 117 ! 69 6

"• 10 . 202
73- 48 26 2 3

1.

. 79 :

"

74- ’ 16 15 1
'

I 32
75- 9 6 1 — 16
76- > .

'

1 1 4 ,

—

— 5
77- 1 1

- -tt; '"'I
V: 2

' Total 6194 1304 741
'

346
•i

8585
i

for persons born in England, Scotland, Wales, and Ireland, and
totalled in the last column. These frequency-distributions are
approximately of the symmetrical type. The frequency-polygon
for the totals given by the last column of the table is shown
in fig. 6. The student will notice that an error of T\- inch,

scarcely appreciable in the diagram on its reduced scale, is neglected
in the scale shown on the base-line, the intervals being treated
as if they were 57-58, 58-59, etc. Diagrams should be drawn for

comparison showing, to a good open scale, the separate 'distributions
for England, Scotland, Wales, and Ireland.
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Fig. 5.—An ideal symmetrical Frequency-distributicsi.

Stature uv truehes.

Fig. 6.—Frequency-distribution of Stature for 8585 Adult Males born in:

the British Isles, (liable VI.)
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Table VII. gives two similar distributions from more recent

investigations, relating respectively to sons over 18 years of

age, with parents living, in Great Britain, and to students at

Cambridge. The polygons are shown in figs. 7 and 8! Both these

distributions are more irregular than that of fig. 6, but, roughly

speaking, they may all be held to be approximately symmetrical.

I
14. The moderately asymmetrical distribution

,
the class-fre-

quencies decreasing with markedly greater rapidity on one side of

the maximum than on the other, as in fig. 9 (a) or (b). This is

the most common of all smooth forms of frequency-distribution,

illustrations occurring in statistics from almost every source. The
distribution of death-rates in the registration districts of England

Table VII.

—

Showing the Frequency-distribution of Statures for (1) 1078
English Sons (Karl Pearson, Biometrika

, ii., 1903, p. 4151 ; (2) for 1000
Male Students at Cambridge (W. R. Macdonell, Biometrika

,
i., 1902,

p. 220). See Figs. 7 and 8.

Stature in

Inches.

Number of Men within said

Limits of Stature.

a)
English Sons.

(2)

Cambridge
Students.

59 -5-00 -5 .
2*0 _

60*5-61 -5 1*5 —
61*5-62*5 3*5 4*0

62*5-63*5 20*5 19*0

63*5-64*5 38*5 24*5

64*5-65*5 61*5 40*5

65*5-66*5 89*5 84*5

66 *5-67*5 148*0 123*5
67*5-68*5 173'5 139*0
68*5-69*5 149*5 179*0
69-5-70*5 1*28*0 138*5
70*5-71*5 . 108*0 108*0 .

71*5-72*5 630 53*5

72*5-73*5 4*2*0 47*5
'

73*5-74*5 29*0
!

21*0

74*5-75*5 8*5
. I

12*0

75*5-76*5 i 4*0 5*0

76*5-77*5 4*0 0*5

77*5-78*5 3*0 —
78*5-79*5 0*5

Total
.

1078 1000
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and Wales, given in Table I., p. 77, is a somewhat rough example

of the type. The distribution of rates of pauperism in the same

Fig 9#r-Ideal distributions of the moderately asymmetrical form.

districts (Table VIII. and fig. 10) is smoother and more like the

type (a) of fig 9. The frequency attains a maximum for

Percentage of the population in, receipt of relief .

Fig. 1 0.-Frequency-distribution of Pauperism (Percentage of the Population
- in Receipt of Poor-law Relief) on 1st January 1891 in the Registration

Districts of England and W&les : 832 Districts. (Table VIII.)



VI.—THE FREQUENCY- DISTRIBUTION. ® 93

districts with 2-f
to 3J per cent, of the population in receipt of

relief, and then tails off slowly to unions with 6, 7, and 8 per
cent, of pauperism.

Table Jill.—Showing the Number of Registration ^Districts in England and

± Wales with Biffemit Percentages of the Population in receipt of Poor-law

Relief on the ls2 January 1891. (Yule, Jour. Roy. Stat. Sac vol. lix.

,

1896, p. 347. q.v. for distributions for earlier years.) See Fig. 10*

Percentage of

the Population

in receipt of

. Relief.

Xumber of

Unions with
given Percent-

age in receipt

- of Relief.

0*75-1*25 18
1*25-1 *75 48
1-75-2 ’26 72

-

2*25-2*75 89

\2 *75-3 *25 100
13*25-3*75 90

j3 *75-4 *25 75
4*25-4*75 60
4*75-5*25 40
5*25-5 75 - 21

5 •75-6*25 11
6*25-6*75 • 5 1

6*75-7*25 1

7*25-7*75 : 1
7*75-8*25 0

. 8*25-8*75 1

Total 632

1:
-

While the distribution of stature is in general symmetrical, that

of weight is asymmetrical or shew, the greater frequencies lying

towards the lower end of the range. This is shown very well by
the data (Table IX. and fig. 11) collected by the same British

Association Committee, from the Report of which the data as to

stature were cited in the last section. As in the case of the stature

diagram (fig. 6), the small error - of J lb. has been neglected, for

the sake of brevity, in lettering the base-line of fig. 11, the classes

being treated as if they were 90 lb.—100 lb., 100 lb.—1 10 lb.
?

and so on.

Table X. and fig. 12 give a biological illustration, viz. the

distribution of fecundity (ratio of yearling foals produced to

coverings) in mares. The student -should notice the difficulty
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Weight in, lbs

.—Frequency - distribution of Weight for 7749 Adult Males in

• the British Isles. (Table IX.

)

. o yis zjis sfm 4jm sjis ejw 7/75 e/ts 3/75 wjm njm ujm whswjia

Hodw of Yearling foals prodacect to coverings .

Fig. 12 .
—Frequency-distribution of Fecundity for Brood-mares

2000 observations. (Table X.)
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Ta.blb IX.—Showing the Frequency-distribution of Weights for Adult Males

born in England, Ireland
,
Scotland, and Wales. (Loc. nil . ,

Table VI,)

V Weights were taken to the nearest -pound, consequently \ilw:Wm"0ass^ *

Internals are*S9'5-99*5, 99 '5-109*5, etc. (§ 9).

•

Weight
in ibs.

Number of Men within given Limits of

Weight. Place of Birth—

Total.

England. Scotland. Wales. Ireland.

90- 2
;

2
100- 26 1 2 5 34
110- 133 8 10 ’ 1 152
120- 338 22 23 7 390
130- 694 63 68 42 867
140- 1240 173 153 57 1623
150- 1075 255 178 51 1559

s 160- 881 275 134 36 1326
170- 492 168 102 25 787
180- 304 125 34 13 476
190- 174 67 14 8 263
200- 75 24 7 1 107
210- 62 14 8 . 1 85
220- 33 7 v-

"

1 — >•

,

41
230- „ 10 4

!
2 — 16

240- 9 2 — 11
250- 3 4 1 — 8
260- 1 — • —

1

270- — - T-' —- , -T — '

280- — i 3 1

Total 5552 1212 738 247 7749

of classification in this case : the class-interval chosen throughout
the middle of the range is 1/1 5th, but the last interval is

“ 29/30-1.” This is not a whole interval, but it is more than.a
half, for all the cases of complete fecundity are reckoned into the

class. In the diagram (fig. 12) it has been reckoned as a whole
class,, and this gives a smooth distribution.

To take an illustration from meteorology, the distribution of

barometer heights at any one station over 'a period of time is, in

general, asymmetrical, the most frequent heights lying towards the

upper end of the range for stations in England and Wales.

Table XL and fig. 13 show the distribution for daily observations

at Southampton during the years 1878-90 inclusive.

The distributions of Tables VIII.-XI. all follow more or less the

type of fig. 9 (a), the frequency tailing tfff, at the steeper end of
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Table X,-~Showing -the Frequency-distribution of Fecundity
}

i.e. the Medio

of the Number of Yearling Foods produced to the Number of Coverings,

for Brood-m,ares (Mace-horses) Covered Eight Times at*feast. (Pearson,

Lee, and Moore, Phil. Trans., A, vol. cxcii. (1899), p. 803.) See Fig. 12.

Fecundity.

Number of

Mares with
Fecundity
between the

Given Limits;

Fecundity.

Number of

Mares with
Fecundity -

between the

Given Limits.

1/30- S/30
.
2 17/30-19/30 315

3/30- 5/30 C 7*5 19/30-21/30 337

5/30- 7/30 11*5 21/30-23/30 293*5

7/30- 9/30 21*5 23/30-25/30 204

9/30-11/30 55 25/30-27/30 127

11/30-13/30 104*5 27/30-29/30 49

13/30-15/30 182 29/30-1 19

15/30-17/30 271*5
- Total 2000*0

Table XI. — Showing the Frequency-distribution of Barometer Heights for
Daily Observations during the Thirteen Years 1878-1890 at Southampton.
(Karl Pearson and A. Lee, Phil. Trans

. ,
A, vol, cxc. (1897), p. 428, gt v.

for numerous other distributions. ) See Fig. 18,

.Height of

Barometer
in Inches.

Number of Days
on which Height
was observed

between the

Given Limits.

Height of

BaTometer
in Inches.

Number of Days
on which Height
was observed

between the

Given Limits. •

28*45-28*55 1 29*85- *95 548*5
*55- *65 2

'

*95-30*05 602-5
*65- *75 2 30*05- *15 619-5
*75- *85 4 *15- *25 500
•85- •95 8*5 ' *25- *35 382
•95-29 '05 13*5 *35- *45 237*5

29*05- •15 21-5 *45- *55 1.89*5

*15- *25 37 •55- *65 W 88 ’5

•25- *35 79 •65- *75 ' 48 -5

*35- *45 -

108 *75- *85 7
‘45- *55 181*5 *85- •95 4

*65 254*5 30-95-31*05 1
65-

;

-75- >
•75 348*5

463-5
&

Total 474.8
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the distribution, in such a way as to suggest that the ideal

curve is tangential to the base. Cases of greater asymmetry,

suggesting an ideal curve that meets the base (at one end) at a

finite angle, even a right angle, as in fig. 9 (b), are less frequent,

but occur occasionally. The distribution of deaths from diphtheria,

according to age, affords one such example of a more asymmetrical

kind. The actual figures for this case are given in Table XII., and

illustrated by fig. 14; and it will be seen that the frequency of

deaths reaches a maximum for children aged “3 and under 4,”

the number rising very rapidly to the maximum, and thence

falling so slowly that there is still an appreciable frequency for

persons over 60 or 70 years of age.

Table XII .—Showing the Numbers of Deaths from Diphtheria at Different

Ages in England and Wales during the Ten Years 1891-1900. {Supple-

ment to 65th Annual Report of the Registrar-General ,
1891-1900, p. 8.)

See Fig. 14.

_
Age in Years.

Number of

Deaths between
Given Limits

of Age.

Number
per Annum.

Under 1 year 4,186 4,186
1- 10.491 10,491
2- 11,218 11,218
3- 12,390 12,390
4- 11,194 11,194
5- 23,348 4,670

10- 4,092 818
15- 1,123 225
20- 585 117
25- 786 79
35- 512 51
45- 324 32
55- 260 r ,1 * 26
65- 127 b Xj 13

75 and upwards 35 .

:

1 ?

Total 80,671 -
r

—

§ 15. The extremely asymmetrical, or “ J-shaped” distribution
,
the

plass-frequencies running up to a maximum at" one end of the

Tange, as in fig. 15.

This may he regarded as the extreme form of the last distribution,

from which it cannot always be distinguished by elementary
methods if the original data are not available. If, for instance,

the frequencies of Table XII. had been given by five-year intervals
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only, they, would have run 49,479, 23,348, 4,092, and so on,

thus suggesting a maximum number of deaths at the beginning

of life, i.e. 'a distribution of the present type. It is only the

analysis of the deaths in the earlier years of life by one-year

intervals which shows that the frequency reaches a true maximum
in the fourth year, and therefore the distribution is of the

moderately asymmetrical type. In practical cases no hard and

Fig. 15.—An ideal Distribution of the extreme Asymmetrical Form.

fast line can always be drawn between the moderately and
extremely asymmetrical types, any more than between the

moderately asymmetrical and the symmetrical type.

In economic statistics this form of distribution is particularly

characteristic of the distribution of wealth in the population at -

large, as illustrated, <?.</., bv income tax and house valuation returns,]

by returns of the size of agricultural holdings, and so on (cf. ref. 4).

The distributions may^ossiBlylDe a vefy"exlreme case of the last

type
;
but if the maximum is not absoli&ely at the lower end of the
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range, it is very close indeed thereto. Official returns do not f

usually give the necessary analysis of the frequencies at thej

lower end of the range to enable the exact position of the maximum
to be determined ; and for this reason the data oh which Table

XIII. is founded, though of course very unreliable, are of some
interest, It will be seen from the table and fig. 16 that with the

given classification the distribution appears clearly assignable" to

the present type, the number of estates between zero and £100
in annual value being more than six times as great as the number
between £100 and £200 in annual value, and the frequency

continuously falling as the value increases. A close analysis of

the first class suggests, however, that the greatest frequency does

not occur actually at zero, but that there is a true maximum
frequency for estates of about £1 15 0 in annual value. The
distribution might therefore be more correctly assigned to the

second type, but the position of the greatest frequency indicates a

/?/ Table XIII .—Showing the Numbers and Annual Values of the Estates of
those who had taken part in the Jacobite Rising of 1715. (Compiled from
Cosin ’^Names of the Roman Catholics

,
Nonjurors

,
and others who refused

to take the Oaths to Ms late Majesty King George
,

etc. ;
London, 1745.

Figures of very doubtful absolute value. See a note in Southey’s

Commonplace Book
,
vol. i. p. 573, quoted from the Memoirs of T. Hollis. )

See Fig. 16. -

Annual
Value in

£100.

Number of

Estates.

Annual
Value in

£100.

Number of

Estates..
.'V -.- >;,

0- 1 1726-5 17-18 1
1- 2 280 —
2- 3 140-5 20-21 4
3- 4 87 21-22 1

4- 5 46*5 22-23 I

5- 6
,

42*5 23-24 1

6- 7 . 29*5

7- 8 25*5 27-28 2
8- 9

|

18*5 — —
9-10 21 81-32 1

10-11 11*5 .
.— —

11-12 9*5 39-40 1

12-13 4
13-14 3*5 45-46 i !

14-15 8 — i

15-

16

16-

17

3

5

48-49 i
|

-
'

Total 2476
|
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,

degree of asymmetry that is high even compared with the

asymmetry of iig. 14 : the distribution of numbers of deaths from

1 2 3 4 5 6 7 3 d JO Jl 12

AnmiaZ value ire <£l00

Frequency-distribution of the Annual Tallies of certain Estates
in England in 1715 : 2476 Estates. (Table XIII.)

diphtheria would more closely resemble the distribution of estate-

values if the maximum occurred in the fourth and fifth weeks
of life instead of in the fourth year. The figures of Table IV.,

p. 83, showing the annual value and dumber of dwelling-houses,
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afford a good illustration of this form of distribution, but marred

by the unequal intervals so common in official returns.

Table XIV .—Showing the Frequencies of Different Numbers of Petals for

Three Series of Ranunculus bplbosus. (H. de Vries, Ber, dtsch. hot. Ges

Bd. xii., 1894, q.v. for details.) See Fig. 17.

Frequency.

Number
of Petals.

Series A. I
Series B. Series 0.

The type is not very frequent in other classes of material, but

instances occur here and there. Table XIV. and fig. 17 show

5 0 7 8 9 5 0 7 8 9 10 11 5 0 7 8 9 10

Fig. 17. --Frequency-distributions of Numbers of Petals for Three Series of

Manunculus bulbosus r A 337, B 380, 0 222 observations. (Table XI V.

)

^distributions of this form for the petals of the buttercup, Ramin-

'culm bulbosus.

1 16. The U-sha/ped distribution^ exhibiting a maximum frequency
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lie ends of the range and a minimum towards the centre

ideal form of the distribution is illustrated by fig. 18.

Fig. 18.-—An ideal Distribution of the U-shaped Form.

This is a rare but interesting form of distribution, as it stands

in somewhat maxEeS contrast to the preceding forms. Table XV.
and fig. 19 illustrate an example based on a considerable number
of observations, viz. the distribution of degrees of cloudiness, or

estimated percentage of the sky covered by cloud, at Breslau

Table XV .—Showing the Frequencies of Estimated Intensities of Cloudiness

at Breslau during the Ten Years 1876-85. (See ref. 2. ) See Fig. 19.

Cloudiness. Frequency. I Cloudiness,
j

Frequency.
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during the years 1876-85. A sky completely, or almost com-

pletely, overcast at the time of observation is the most common,

a practically clear sky comes next, and intermediates -are more

rare.

This form of distribution appears to be sometimes exhibited by

the percentages of offspring possessing a certain attribute when one

at least of the parents also possesses the attribute. The remarks

^2000 \

'

r L

§ 1000

0 12 3 4 5 C 7 3 9 JO
CZoitdifiess

Fig. 19.—Frequency-distribution of Degrees of Cloudiness at Breslau

1876-85 : 3653 observations. (Table XV.)

of Sir Francis Galton in Natural Inheritance suggest such a

form for the 'distribution of “ consumpfcivity ” amongst the off-

spring of consumptives, but the figures are not in a decisive shape.

Table XVI. gives the distribution for an analogous case, viz. the

Table XVI.

—

Showing the Percentages of Deaf'mutes among Children of
Parents one of whom at least was a Deaf-mute

, for Marriages producing
Five Children or more. (Compiled from material in Marriages of the Deaf
in America, ed. E. A. Fay, Volta Bureau, Washington, 1898.)

Percentage
Number of

Percentage

Deaf-mutes.
families.

Deaf-mutes.

Number of

Families.
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distribution of deaf-mutism amongst the offspring of parents one

of whom at least was a deaf-mute. In general less than one-fifth

of the children are deaf-mutes : at the other end of the range the

eases in which over 80 per cent, of the children are deaf-mutes are

nearly three times as many as those in which the percentage lies

between 60 and 80. The
a very satisfactory illusfcra

(1)

/Pearson, Karl, “Skew Variation in Homogeneous Material,” Phil.

Trans. Roy. Soc., Series A, vol. clxxxvi. (1895), pp. 343-414.

(2) Pearson, Karl, “Cloudiness: Note on a Novel Case of Frequency,”
Pros. Roy. Soc., vol. lxii. (1897), p. 287.

(3) Pearson, Karl, “Supplement to a Memoir on Skew Variation,” Phil.

Trans. Roy. Soc., Series A, vol. cxcvii. (190?), pp. 443-459.

(4) Pareto, Vilerkdo, Cours d^condmie politique

;

2 vols.
,
Lausanne, 1896-7.

See especially tome ii, livre iii., chap, i, “La courbe des revenns.”
The first three memoirs above are mathematical memoirs on the theory

of ideal frequency-curves, the first being the fundamental memoir, and
the second and third supplementary. The elementary student may,
however, refer to them with advantage, on account of the large collection

of frequency-distributions which is given, and from which some of the
illustrations in the preceding chapter have been cited. Without
attempting to follow the mathematics, he may also note that each of

our rough empirical types may be divided into several sub-types, the
theoretical division into types being made on different grounds.
The fourth work is cited on account ofthe author’s discussion ofthe dis- .

tribution of wealth in a community, to wl i ieh reference was made in § 15.

In connection with the remarks in § 6, on the grouping of ages,

reference may be made to the following in which a different conclusion

is drawn as to the best grouping ;

—

(5) Young, Allyn A. ,

‘
‘ A Discussion of Age Statistics,” Census Bulletin IS,

Bureau of the Census, Washington, U.S.A., 1904.

Reference should also be made to the Census of England and Wales
,

1911, vol. vii., “Ages and Condition as to Marriage,” especially the

Report by Mr George King on the graduation of ages,

EXERCISES.

1. If the diagram fig. 6 is redrawn to scales of 300 observations per interval

to the inch and 4 inches of stature to the inch, what is the scale of observa-

tions to the square inch %

If th e scales are 100 observations per interval to the centimetre and 2 inches

of stature to the centimetre, what is the scale of observations to the

square centimetre ?

2. If fig. 10 is redrawn to scales of 25 observations per interval to the inch and

2 per cent, to the inch, what is the scale of observations to the square inch ?

If the scales are ten observations per interval to the centimetre and 1 per cent,

to the, centimetre, what is the scale of observations to the square centimetre ?

Vlf a frequency-polygon be drawn to represent the data of Table I., what
number of observations will the polygon show between death-rates of 16*5

apd,17*5 per thousand, instead of the true number 159 %

(jji If a frequency-polygon be drawn to represent the data of Table V.,

what number of observations will the polygon show between head-breadths

5*95 and 6*05, instead of the true number 236 ?

numbers^.re, however, too small to form
tion-^ 1W.

'

'

'

REFERENCES.: v:
;

V;



CHAPTER VII.

AVERAGES.

1. Necessity for quantitative definition of the characters of a frequency -

distribution—- 2. Measures of position (averages) and of dispersion— 3.

The dimensions of an average the same as those of the variable—4.

Desirable properties for an average to possess—5. The commoner forms

ofaverage—6-13. The arithmetic mean : its definition, calculation, and
simpler properties—14-18. The median : its definition, calculation, and
simpler properties—19-20. The mode: its definition and relation to

mean and median—21. Summary comparison of the preceding forms

of average—22-26. The geometric mean : its definition, simpler pro-

perties, and the cases in which it is specially applicable—27. The
harmonic mean : its definition and calculation.

1. In § 2 of the last chapter it was pointed out that a classification

of the observations in any long series is the first step necessary

to make the observations comprehensible, and to render possible

those comparisons with other series which are essential for any
discussion of causation. Very little experience, however, would

show that classification alone is .not an adequate method, seeing

that it only enables qualitative or verbal comparisons to be made.

The next step that it is desirable to take is the quantitative

definition of the characters of the frequency-distribution, so that

quantitative comparisons may be made between the corresponding

characters of two or more series. It might seem at first sight

that very difficult cases of comparison could arise in which, for

example, we had to contrast a symmetrical distribution with a “ J*

shaped ” distribution. As a matter of practice, however, we seldom
have to deal with such a case

;
distributions drawn from similar

material are, in general, of similar form. When we have to

compare the frequency-distributions of stature ii two races of

man, of the death-rates in English registration districts in two
successive decades, of the numbers of petals in two races of the

same species of Ranunculus
,
we have only to compare with each

other two distributions of the same or nearly the same type.

2. Confining our attention, then, to this simple case, there are

two fundamental characteristics in which such distributions may
106
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differ: (1) they may differ markedly in position, i.e. in the Tallies

of the variable round which they centre, as in fig. 20, A

,

or (2)

they may centre round the same value, but differ in the range of

variation or dispersion
,
as it is termed, as in fig. 20, B. Of course

the distributions may differ in both characters at once, as in fig 20, *

G,
but the two properties may be considered independently.

Measures of the first character, position
,
are generally known as

averages
;
measures of* the second are termed measures of disper-

sion. In addition to these two principal and fundamental
characters, we may also take a third of some interest but of much'
less importance, viz. the degree of asymmetry of the distribution.

The present chapter deals only with averages
;
measures of

dispersion are considered in Chapter Till, and measures of

asymmetry are also briefly discussed at the end of that chapter.

3. In whatever way an average is defined, it may be as well to

note, it is merely a certain value of the variable, and is therefore

necessarily of the same dimensions as the variable : i.e. if the

variable be a length, its average is a length; if the variable be a

percentage, its average is a percentage, and so on. But there are

several different ways of approximately defining the position of a

frequency-distribution, that is, there are several different forms of

average, and the question therefore arises, By what criteria are we
to judge the relative merits of different forms ? What are, in fact,

the desirable properties for an average to possess ?
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* 4. (a) In the first place, it almost goes without saying that an
average should be rigidly defined, and not left to the mere estimation

of the observer. An average that was merely estimated would

.depend too largely on the observer as well as the data, (b) An
average should be based on all the observations made. If not,

it is not really a characteristic of the whole distribution. (c)rIt

is desirable that the average should possess some simple and
obvious properties to render its general nature readily compre-

hensible : an average should not be of too abstract a mathematical

character. (d) It is, of course, desirable that an average should

be calculated with reasonable ease and rapidity. Other things

being equal, the easier calculated is the better of two forms of

average. At the san*3 time too great weight must not be attached

to mere ease of calculation, to the neglect of other factors, (e)

It is desirable that the average should be as little affected as

may be possible by what we have termed fluctuations of sampling.

If different samples be drawn from the same material, however
carefully they may be taken, the averages of the different samples

will rarely be quite the same, but one form of average may show
much greater differences than another. Of the two forms, the

more stable is the better. The full discussion of this condition

must, however, be postponed to a later section of this work
(Chap. XVII.). (f) Finally, by far the most important desideratum

is this, that the measure chosen shall lend itself readily to

algebraical treatment. If, e.y., two or more series of observations

on similar material are given, the average of the combined series

should be readily expressed in terms of the averages of the

component series : if a variable may he expressed as the .sum of

two or more others, the average of the whole should be readily

expressed in terms of the averages of its parts. A measure for

which simple relations of this kind cannot he readily determined

is likely to prove of somewhat limited application.

5. There are three forms of average in common use, the

arithmetic mean, the median, and the mode, the first named being

by far the most widely used in general statistical work. To
these may be added the geometric mean and the harmonic mean,
more rarely used, but of service in special cases. We will con-

sider these in the order named.
6. The arithmetic mean.—The arithmetic mean ©f a series of

values of a variable Xv Jl
2,
X

z> . .
. v Xm X in number, is the

quotient of the sum of the values by their number. That is to

say, if AT be the arithmetic mean,
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or, to express it more briefly by using the symbol 2 to denote

the sum of all quantities like,”

M~±2(X) . . . . (1)

T&e word mean or average alone, without qualification, is very
generally used to denote this particular form of average: that

is to say, when anyone speaks of “the mean” or “the average”
of a series of observations, it may, as a rule, be assumed that the

arithmetic mean is meant. It is evident that the arithmetic

mean fulfils the conditions laid down in (a) and (5) of § 4, for it

is rigidly defined and based on all the observations made.
Further, it fulfils condition (c), for its general nature is readily

comprehensible. If the wages-bill for IF workmen is £P, the

arithmetic mean wage, P/J)F pounds, is the amount that each

would receive if the whole sum available were divided equally

between them : conversely, if we are told that the mean wage
is £M, we know this means that the wages-bill is K.M pounds.

Similarly, if IF families possess a total of G children, the mean
number of children per family is G/IF—the number that each
family would possess if the children were shared uniformly.

Conversely, if the mean number of children per family is M> the

total number of children in IF families is JSF.M. The arithmetic

mean expresses, in fact, a simple relation between the whole
and its parts.

7. As regards simplicity of calculation,- the mean takes a high

position. In the cases just cited, it will be noted that the mean
is actually determined without even the necessity of determining

or noting all the individual values of the variable : to get the

mean wage we need not know the wages of every hand, but only

the wages-bill; to get the mean number of children per family

we need not know the number in each family, but only the total.

If this total is not given, but we have to deal with a moderate
number of observations—so few (say 30 or 40) that it is hardly

worth while compiling the frequency-distribution—-the arithmetic

mean is calculated directly as suggested by the definition, i.e.

all the values observed are added together and the total divided

bv the number of observations. But if the number of observations

be large, this direct process becomes a little lengthy. It may
be shortened considerably by forming the frequency-table and
treating all the values in each class as if they were identical with

the mid-value of the class-interval, a process which in general

gives an approximation that is quite sufficiently exact for prac-

tical purposes if the class-interval has been taken moderately
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small (cf. Chap. YI. § 5). In this process each class-frequency

is multiplied by the mid-value of the interval, the products added

together, and the total divided by the number of observations.

If /denote the frequency of any class, X the mid-value of the

corresponding class-interval, the value of the mean so obtained

may be written*

—

Jf=As(/.X) .... (2)

8. But this procedure is still further abbreviated in practice

by the following artifices (1) The class-interval is treated

as the unit of measurement throughout the arithmetic
; (2) the

difference between /he mean and the mid-value of some arbi-

trarily chosen class-interval is computed instead of the absolute

value of the mean.
If A be the arbitrarily chosen value and

X~A + i. . . . . (3)

then

#>

or, since A is a constant,

i¥=l + As(/.f) .... (4)

The calculation of is therefore replaced by the calcula-

tion of 3(/f). The advantage of this is that the class-frequencies

need only be multiplied by small integral numbers ;
for A

being the mid-value of a class-interval, and X the mid-value of

another, and the class-interval being treated as a unit, the, £
5

s

must be a series of integers proceeding from zero at the arbitrary

origin A, To keep the values of £ as small as possible, A should

be chosen near the middle of the range.

It may be mentioned here that S(£), or S(/.£) for the grouped
distribution, is sometimes termed the first moment of the distribu-

tion about the arbitrary origin A : we shall not, however, make
use of this term.

9. The process is illustrated by the following example, using

the frequency-distribution of Table VIII., Chap. VI. The
arbitrary origin A is taken at 3*5 per cent., the middle of the

sixth class-interval from the top of the table, and a little nearer

than the middle of the range to the estimated position of the

mean. The consequent values of £ are then written down as in

column (3) of the table, against the corresponding frequencies, the

values starting, of course, from zero opposite 3
-5 per cent. Each

frequency/ is then multiplied by its £ and the products entered
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in another column (4). The positive and negative products are

totalled separately, giving totals - 776 and + 509 respectively,

whence 2(/.£) «= - 267. Dividing this b} i\
r
,

viz. 632, we have

the differenco'of M from A in class-intervals, viz. 0*42 intervals,

that is 0*21 per cent. Hence the mean is 3*5 - 0*21 = 3*29

per cent.
•

Calculation or the Mean: Example i.—Calculation of the Arithmetic

Mean of the Percentages of the Population in receipt of Belief
,
from the

Figures of Table VIII,
,
Ghap. VI.

, p. 93.

(1) (2) (3) (4)

Mid-values
¥

*

of the Deviation

Class-intervals Frequency from Arbitrary Product

(Percentage in /• Value A Jl
receipt of

I-

Belief).

1 . 18 - 5 90
1*5 48 - 4 192*

2 72 - 3 216

2 *5 89 - 2 178

++3 .,+ 100 - 1 100

3*5 90 -

0 -776

4 75 + 1 75
4*5 60 + 2 120
5 40 + 3 120
5*5 21 + 4 84

6 11 + 5 55
6*5 5 + 6 30

7 1 + 7 7

.

7*5 1 + s 8

8 — + 9 —

-

8*5 1 + 10 10

Total 632 — + 509

2(/£)= + 509 - 776 = - 267

267 :

M~A=z - class-intervals= -0*42 class-intervals

= -0*21 units

.
*. mean M- 3 *5 - 0 *21 = 3*29 per cent.

It must always be remembered that 2(/.£)/iY gives the value of

M~ A in class-intervals, and must not be added directly to A
unless the interval is also a unit. In tire present illustration the
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interval is 'half a unit, and accordingly the quotient 267/632 is

halved in order to obtain an answer in units. Care must also be

taken to give the right sign to the quotient.

10. As the process is an important one we give a second illustra-

tion from the figures of Table VI., Chap. VI In this case the class-

interval is a unit (1 inch)* so the value of M-A is given directly

by dividing 3(/.£) by V. The student must notice that, measures

having been made to the nearest eighth of an inch, the mid-values

of the intervals are 57/¥, 58/^, etc., and not 57*5, 58*5, etc.

Calculation of the Mean: Example ii.— Calculation of the Arithmetic

Mean Stature of Male Adults in the British Isles from the Figures of

Chap. VI., Table VI
, p. 88.

(1)

Height,

Inches.

(2)

Frequency

/

(3)

Deviation

from Arbitrary

Value A
£

(4)

Product

fi-

s 57- 2 -10 20
58- 4 ++ - 9 36
59- 14 - 8 112.
60- 41 - 7 287
61- 83 - 6 498
62- 169 - 5 845
63- 394 - 4 1576
64- 669 - 3 2007.
65- 990 - 2 1980
66- 1223 - 1 1223

67- 1329 0 - 8584

68- • 1230 + 1 1230
69- 1063 + 2 2126
70- 646 4-3 1938
71- 392 + 4 - 1568
72- 202 + 5 1010
73- 79 + 6 474
74- 32 + 7 224
75- 16 + 3 128
76- '

! 5 + 9 45
77- 2 ' +10 1 20

Total 8585
I

;

> + 8763

2{/S)=+ 8763 -8584=+179
179M~~A~ + = + *02 class-intervals or inches.
o585

. \ jlfa=67/s + *02= 67 ‘46 inches.
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It is evident that an absolute cheek on the arithmetic of any

such calculation maybe effected by taking a different arbitrary

origin for the deviations : all the figures of col. (4) will be changed,

but the value ultimately obtained for the mean must be the

same. The student should note that a classification by unequal

intervals is, at best, a hindrance to this simple form of calculation,

and the use of an indefinite interval for the extremity of the

distribution renders the exact calculation of the mean impossible

(cf. Chap. YI. § 10).

11. We -return again below (§ 13) to the question of the
:

Mi '

Fig. 21. —Showing the Arithmetic Mean 'M, the Median Mi, and the Mode Mo,
by verticals drawn through the corresponding points on the base, for the

distribution of pauperism of fig. 10, p. 92.

errors caused by the assumption that all values within the same
interval may be treated as approximately the mid-value of the

interval. It is sufficient to say here that the error is in general

very small and of uncertain sign for a distribution of the

symmetrical or only moderately asymmetrical type, provided of

course the class-interval is not large (Chap. VI. § 5). In the case

of the “J-shaped” or extremely asymmetrical distribution, how-

ever, the error is evidently of definite sign, for in all the intervals

the frequency is piled up at the limit lying towards the greatest

frequency, i.e. the lower end of the range in the case of the illustra-

tions given in Chap. YI., and is not bvenly distributed over the
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interval. In distributions of such a type the intervals must be

made very small indeed to secure an approximately accurate value

for the mean. The student should test for himself the effect of

different groupings in two or three different caseg, so as to get

some idea of the degree of inaccuracy to be expected.

12. If a diagram has been drawn representing the frequency-

distribution, the position of the mean may conveniently be

indicated by a vertical through the corresponding point on the

base. Thus fig. 21 (a reproduction of fig. 10) shows the frequency-

polygon for our first illustration, and the vertical MM indicates

the mean. In a moderately asymmetrical distribution at all of

this form the mean lies, as in the present example, on the side of

the greatest frequescy towards the longer “ tail ” of the distribu-

tion: M in fig. 22 shows similarly the position of the mean in

an ideal distribution. In a symmetrical distribution the mean
coincides with the centre of symmetry. The student should mark
the position of the mean in the diagram of every frequency dis-

tribution that he draws, and so accustom himself to thinking of

the mean, not as an abstraction, but always in relation to the

frequency-distribution of the variable concerned.

13. The following examples give important properties of the

arithmetic mean, and at the same time illustrate the facility of its

algebraic treatment :

—

(a) The sum of the deviations from the mean, taken with their

proper signs, is zero.

This follows at once from equation (4): for if M and A are

identical, evidently 2s(/\£)cmust be zero.
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(b) If a series of JV observations of a variable X consist of, say,

two component series, the mean of the whole series can be

readily expressed in terms of the means of the two components.

For if we denote the values in the first series by Xj and in the

second series by X0,

,

'
' S(X) = S(X

1) + 2(X2),

that is, if there be observations in the first series and JF0 in

the second, and the means of the two series be Mv M2
respectively,

+ . .
. (5)

For example, we find from the data of Table VI.
,
Chap. VI.,

Mean stature of the 346 meii bom in Ireland = 67*78 in.

741 „ „ Wales -66 *62 in.

Hence the mean stature of the 1087 men born in the two countries

is given by tlie equation—

*

1087.il/=(346 x 67*78) + (741 x 66*62).

That is, M— 66*99 inches. It is evident that the forpi of the

relation (5) is quite general : if there are r series of observations

Xj, X
2 ... . Xr,

the mean M of the whole series is related to

the means Mv M2 ... . Mn of the component series by the

equation

XJ/-X
1
.l/

1 +X2
.i/

2 + .... +Fr.MT , . (6)

For the convenient checking of arithmetic, it is useful to note

that, if the same arbitrary origin A for the deviations £ be taken

in each case, we must have, denoting the component series by the

subscripts 1, 2, . . . r as before,

• 2(/.0 = SCA4) + s(/2-4) + + S(/r4) • (7)

The agreement of these totals accordingly checks the work.

As an important corollary to the general relation (6), it may
be noted that the approximate value for the mean obtained from

any frequency distribution is the same whether we assume (1)

that all the values in any class are identical with the mid-value

of the v class-interval, or (2) that the mean of the values in the

class is identical with the mid-value of the class-interval.

(c) The mean of all the sums or differences of corresponding

observations in two series (of equal numbers of observations) is

equal to the sum or difference of the means of the two series.

This follows almost at once. For if
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That is, if M, Mv M„ be the respective means,

M— M-^ + Mq, . . . . (8)
r
r

Evidently the form of this result is again quite general, so that

if

X = Xj±X
2 ± .... ±xn

M=M
1
±M

2± , . ±Mr . . . (9)

As a useful illustration of equation (8), consider the case of

measurements of any kind that are subject (as indeed all

measures must be) to greater or less errors. The actual measure-

ment X in any such case is the algebraic sum of the true

measurement <and an error X
2 . The mean of the actual

measurements M is therefore the sum of the true mean Mv and
the arithmetic mean of the errors Jf

2. If, and only if, the

latter be zero, will the observed mean be identical with the true

mean. Errors of grouping (§ 11) are a case in point.

14. The median.—The median may be defined as the middle-

most or central value of the variable when the values are ranged

in order of magnitude, or as the value such that greater and
smaller values occur with equal frequency. ' In the case of a

frequency-curve, the median may be defined as thakvalue of the

variable the vertical through which divides the area of the curve

into two equal parts, as the vertical through Mi in fig. 22.

The median, like the mean, fulfils the conditions (b) and (c)

of § 4, .seeing that it is based on all the observations made, and
that it possesses the simple property of being the central or

middlemost value, so that its nature is obvious. But the defini-

tion does not necessarily lead in all cases to .a determinate value.

’If there be an odd number of different values of X observed, say

2n+l, the (n+ l)th in order of magnitude is the only value

fulfilling the definition. But if there be an even number, say

2n different values, any value between the nth and (n+ l)th

fulfils the conditions. In such a case it appears to be usual to

take the mean of the nth and (n+l)th values as the median,

but this is a convention supplementary to the definition. It

should also be noted that in the case of a discontinuous variable

the second form of the definition in general breaks down : .if we
range the values in order there is always a middlemost value

(provided the number of observations be odd), but there is not, as a

rule, any value such that greater and less values occur with equal

frequency. Thus in Table III., § 3 of Chap. VI., we see that 45 per

cent, of the poppy capsules had 12 or fewer stigmatie rays, 55
per cept. had 13 or morej similarly 61 per cent, had 13 or fewer

rays, 39 per cent, had 14 or more. There is no number of rays
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such that the frequencies in excess and defect are equal.

In the case of the buttercups of Table XIV, (Chap. VI. § 15)

there is no number of petals that even remotely fulfils the

required condition. An analogous difficulty may arise, it may
be remarked, even in the case of an odd number of observations

of a continuous variable if the number of observations be small

and* several of the observed values identical. The median is

therefore a form of average of most uncertain meaning in cases

of strictly discontinuous variation, for it may be exceeded by

5, 10, 15, or 20 per cent, only of the observed values, instead of

by 50 per cent.: its use in such cases is to be * deprecated, and
is perhaps best avoided in any case, whether the variation be
continuous or discontinuous, in which small series of observations

have to be dealt with.

15. When a table showing the frequency-distribution for a
long series of observations of a continuous variable is given, no
difficulty arises, as a sufficiently approximate value of the median
can be readily determined by simple. interpolation oil -the. hypo-.

thesis that_Ahe.--values .each class are uniformly, distributed

throughout, the interval. Thus, taking the figures in** our first

illustration of the method of calculating the mean, the total

number of observations (registration districts) is 632, of which
the half is 316. Looking down the table, we see that there are

227 districts with not more than 2 ’75 per cent, of the population

in receipt of relief, and 100 more with between 2*75 and 3*25

per cent. But only 89 are required to make up the total of 316 ;

hence the value of the median is taken as

89
2*75 +—- . = 2*75 + 0*445

= 3*195 per cent.

The mean being 3*29, the median is slightly less
;

its position

is indicated by Mi in fig. 21.

The value of the median stature of males may be similarly

calculated from the data of the second illustration. The work
may be indicated thus :

—

Half the total number of observations (8585) = 4292*5

Total frequency under 66 inches . . =3589

Difference
'

. = 703*5

Frequency in next interval . , , =1329

Therefore median = 66-^-f +

= 67*47 inches.
*
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The difference between median and mean in this case is

therefore only about one-hundredth of an inch, the smallness

of the difference arising from the approximate symmetry of

the distribution. In an absolutely symmetrical distribution

it is evident that mean and median must coincide.

16. Graphical interpolation may, if desired, be substituted

for arithmetical interpolation. Taking, again, the figured of

Example i., the number of districts with pauperism not exceeding

2*25 is 138; not exceeding 2*75, 227 ;
not exceeding 3;25, 327

;

and not exceeding 3*75, 4-17. Plot the numbers of districts

with pauperism not exceeding each value X to the corresponding

Percentage of the population
in receipt* of relief.

Fig. 23.—-Determination of the median by graphical interpolation.

value of X on squared paper, to a good large scale, as in fig. 23,

and draw a smooth curve through the points thus obtained,

preferably with the aid of one of the ucurves,” splines, or flexible

curves sold by instrument-makers for the purpose. The point

in which the smooth curve so obtained cuts the horizontal line

corresponding to a total frequency N/2~ 316 gives the median.
In general the curve is so flat that the value obtained by this

graphical method does not differ appreciably from that calculated

arithmetically (the arithmetical process assuming that the

curve is a straight line between the points on eitherside of

the median); if the curvature is considerable, the gftfephical

value—assuming, of course, careful and accurate draughtsmanship
—is to be preferred to "the arithmetical vahie, as it does hot
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involve the crude assumption that the frequency is uniformly
distributed: over the interval in which the median lies.

17. A comparison of the calculations for the mean and
for the median respectively will show that on the score of

brevity of calculation the median has a distinct advantage.

When, however, the ease of algebraical treatment of the two
forms of average is compared,

.
the superiority lies wholly on

the side, of the mean. As was shown in § 13, when several series

of observations are combined into a single series, the mean of

the resultant distribution can be simply expressed in terms
of the means of the components. The expression of the

median of the resultant distribution in terms of the medians
of the components is, however, not merely complex and difficult,

but impossible: the value of the resultant* median depends on
the forms of the component distributions, and not on their

medians alone. If two symmetrical distributions of the same
form and with the same numbers of observations, but with

different medians, be combined, the resultant median must
evidently (from symmetry) coincide with the resultant mean, i.e.

lie halfway between the means of the components. But if the

two components be asymmetrical, or (whatever their form)

if the degrees of dispersion or numbers of observations in the

two series he different, the resultant median will not coincide

with the resultant mean, nor with any other simply assignable

value. It is impossible, therefore, to give any theorem for

medians analogous to equations (5) and (6) for means. It is

equally impossible to give any theorem analogous to equations

(8) and (9) of § 13. The median of the sum or difference of

pairs of corresponding observations in two series is not,

in general, equal to the sum or difference of the medians of

the two series
;
the median value of a measurement subject to

error is not necessarily identical with the true median, even

if the median error be zero, i.e. if positive and negative errors

be equally frequent.

18. These limitations render the applications of the median in

any work in which theoretical considerations are necessary com-

paratively circumscribed. On the other hand, the median may
have an advantage over the mean for special reasons, (a) It is

very readily calculated
; a factor to which, however, as already

stated, too much weight ought not to be attached, (b) It is

readily obtained, without the necessity of measuring all the

objects to be observed, in any case in which they can be arranged

by eye in order of magnitude. If, for instance, a number of men
be ranked in order of stature, the stature of the middlemost is

the median, and he alone need be measured. (On the other hand
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it is useless in the cases cited at the end of § 6 ;
the median wage

cannot be found from the total of the wages-biil, and the total

of the wages-biil is not known when the median is given.) (c) It

is sometimes useful as a makeshift, when the observations are so

.given that the calculation of the mean is impossible, owing, e.g., to

a final indefinite class, as in Table IV. (Chap. VI. § 10). (d) The
median may sometimes be preferable to the mean, owing to its

being less affected by abnormally large or small values of the

variable. The stature of a giant would have no more influence

on the median stature of a number of men than the stature of

any other man whose height is only just greater than the median.

If a number of men enjoy incomes closely clustering round a

median of <£500 a ye^ir, the median will be no more affected by
the addition to the group of a man with the income of £50,000
than by the addition of a man with an income of £5000, or even

£600. If observations of any kind are liable to present occasional

greatly outlying values of this sort (whether real, or due to

errors or blunders), the median will be more stable and less

affected by ffuetuations of sampling than the arithmetic mean.

(In genei'frl the mean is the less affected.) The point is discussed

.more fully later (Chap. XVII'). (e) It may be added that the

median is, in a certain sense, a particularly real and natural

form of average, for the object or individual that is the median
object or individual on any one system of measuring the character

with which we are concerned will remain the median on any
other method of measurement which leaves the objects in the

same relative order. Thus a batch of eggs representing eggs

of the median price, when prices are reckoned at so much per

dozen, will remain a batch representing the median price when
prices are reckoned at so many eggs to the shilling.

I 19. The Mode .—The mode is the value of the variable corre-

fsponding to the maximum of the ideal frequency-curve which
Igives the closest possible fit to the actual distribution.

It is evident that in an ideal symmetrical distribution mean,
median and mode coincide with the centre, of symmetry. If,

however, the distribution be asymmetrical, as in fig. 22, the three
forms of average are distinct, Mo being the mode, Mi the median,
and M the mean. Clearly, the mode is an important form of

average in the cases of skew distributions, though the term is of

recent introduction (Pearson, ref. 11). It represents the value
which is most frequent or typical, the value which is in fact the
fashion {la mode), But a difficulty at once arises on attempting
to determine this value for such distributions as occur in practice.

It is no use giving merely the mid- value of the class-interval into

c which the greatest frequency falls, for this is entirely dependent
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on the choice of the scare of class-intervals. It is no use making
the class-intervals very small to avoid error on that account, for *

the class-frequencies will then become small and the distribution

irregular. What we want to arrive at is the mid-value of the

interval for which the frequency would be a maximum, if the

intervals could be made indefinitely small and at the same time
the number of observations be so increased that the class-frequen-

cies should run smoothly. As the observations cannot, in a
practical case, be indefinitely increased, it is evident that some
process of smoothing out the irregularities that occur in the

actual distribution must be adopted, in order to ascertain the

approximate value of the mode. But there is only one smoothing
process that is really satisfactory, in so £ar,as every observation

can be taken into* account in the determination, and that is the

method of fitting an ideal frequency-curve of given equation to

the actual figures. The value of the variable corresponding to the

maximum of the fitted curve is then taken as the mode, in

accordance with our definition. Mo in fig. 21 is the value of the

mode so determined for the distribution of pauperism, the value

2*99 being, as it happens, very nearly coincident with £he centre

of the interval in which the greatest frequency lies. The deter-

mination of the mode by this—the only strictly satisfactory

—

method must, however, be left to the more advanced student.

20. At the same time there is an approximate relation between

mean, median, and mode that appears to hold good with surprising

closeness for moderately asymmetrical distributions, approaching

the ideal type of- fig. 9, and it is one that should be borne in

mind as giving—roughly, at all events—the relative values of

these three averages for a great many cases with which the

student will have to deal. It is expressed by the equation—

Mode - Mean - 3(Mean - Median).

That is to say, the median lies one-third of the distance from the

mean towards the mode (compare figs . 21 and 22). For the dis-

tribution of pauperism we have, taking the mean to three places of

"decimals,— /; .
.:/

Mean . . . . . . 3*289

Median . . . .
3*195

Difference . 0*094

3

Hence approximate mode — 3*289 - 3 x 0*094

— 3*007,

or 3*01 to the second place of decimals, which is sufficient accuracy

for the final result, though three decimal places must be retained

for the calculation. The true mode, ’found by fitting an ideal
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distribution, is 2*99. As- further illustrations of the closeness

with which the relation may be expected to hold in different cases,

we give below the results for the distributions of pauperism in

the unions of England and Wales in the years 1S£?0, 1860, 1870,

1881, and 1891 (the last being the illustration taken above),

and also the results for the distribution of barometer heights at

Southampton (Table XL, Chap. VI. § 14), and similar distribu-

tions at four other stations.

Comparison of the Approximate and True Modes in the Case of Five Dis-

tributions of Pauperism {Percentages of the Population in receipt of

Relief ) in the Unions of England, and Wales. (Yule, Jour. Roy . Slat.

Soc vol. lix/, 1896.)

Year. Meanf Median.
Approximate

Mode;
True Mode.

1850 6*508 6-261 5-767 5*815

1860 5*195 5-000 4-610 4*657

1870 5-451 5*880 5*238 5*038

1881 8*676
1

3*528 3-217
|

3*240

1891 8-289
!

3*195 3*007 2*987

Comparison of the Approximate and True Modes in the Case of Five Dis-

tributions of the Height of the Barometer for Daily Observations at the

Stations named. (Distributions given by Karl Pearson and Alice Lee,

Phil. Trans., A, vol. cxc. (1897), p. '423
)

Station.

j

Mean. Median.
Approximate

Mode.
True Mode.

Southampton . j

29*981 30-000 30:038 30-039

Londonderry .
j

29-891 29*915 29*963 29*960

Carmarthen . i

29*952 29*974 30*018 30*013

Glasgow . 29-886 29*906 *29*946 29-967

Dundee , 29*870 29*890 29*930
!

29 951

It will be seen that in the case of the pauperism figures the

approximate mode only diverges markedly from the true value

in the year 1870, a year in which the frequency-distribution was
very irregular. In all the other years the difference between the

true and approximate values of the mode is hardly greater than
the alteration that might be caused in the true mode itself by
slight variations in the method of fitting the curve to the actual

distribution. Similar remarks apply to the second series of illus-

trations; the true and approximate values are extremely close,

except in the case of Dundee and Glasgow, where the divergence

f
reaches two-hundredths of an inch.

21. Summing up the preceding paragraphs, we may say that

n h the mean is the form of average to use for all general purposes
;

v® VW'5L&t’ J%w ,„ (

v hff’
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^ it is simply calculated, its value is always determinate, its

q v,^^ge^raic treatment is particularly easy, and in most cases it is

V?y-
is

&
rather less affected than the median by errors of sampling. The .

*

median is, it? Is true, somewhat more easily calculated from a given S**C^ £
freauencv-distribution than is- the mean : it" is sometimes a, useful ,v i ^ Afrequency-distribution than is the mean

;
it is sometimes a useful Jy yj*

*•- k yi* ^ makeshift, and in a certain class of cases it is more and not less
-"^5^^ 2L*

'

°C'f tS^thhle than the mean
;
but its use is undesirable in cases of discon- j.\

v' XX
i

&

f,8 '2 tinuous variation, its value may be indeterminate, and its algebraic £..v
£

,

XV:^ : treatment is difficult and often impossible. The mode, finally, ir
A

,*?•
‘

V I] is a form of average hardly suitable for elementary use, owing
. l v* >/

t, ly, - to ^ie difficulty of its determination, but at the same time it ^ 5'^
- represents an important value of the variable. The arithmetic !;L^ c

2 V *> mean should invariably be employed unless there is some very y
’

! I* ^definite reason for the choice of another form of average, and the <n ;

i

;

"'h
i(_

/ elementary student will do very well if he limits himself to its Vy**
#

•

P use. Objection is sometimes taken to the use of the mean in the -]i\ |* f/ ,,3 ,

f \ x

^ case of asymmetrical frequency-distributions, on the ground that *4 '*V* ? 'V

^ o y the mean is not the mode, and that its value is consequently ?

^is^ading. But no one in the least degree familiar with the

manifold forms taken by frequency-distributions would*regard the
H : i two as in general identical ; and while the importance of the mode

^ is a good reason for stating its value in addition to that of the $

3 ^ f. i mean, it cannot replace the latter. The objection, it may be noted, ^ ; *
n

%

:

o would apply with almost equal force to the median, foi^ as we have * pj
C t seen (§ 20), the difference between mode and median is usually h ;

*

b* >r

r about two-thirds of the difference between mode and mean.
f f 4

*
^

1
. 22. The Geometric Mean.-—The geometric mean £ of a series of

* ^ *

- % values Xv X2 ,
X

3,
... . X„, is defined by the relation

\i

‘
' ~ '

"
. -

.

.

- *
^ n t -XT -XT v tr /I /\\ !« •

•.
.

*„*. . .
(iu)

;x
...” ^

*> y |
The definition may also be expressed in terms of logarithms,

X„)» (10) li

;\i f.

'H
log(? = is(logX)

t: V 2 that is to say, the logarithm of the geometric mean of a series of •

$U values is the arithmetic mean of their logarithms. ,2
'

' *
j

t \ JZ The geometric mean of a given series of quantities is always y j

^r.less than their arithmetic mean
;
the student will find a proof in

* most text-books of algebra, and in ref. 10. The magnitude of s f &
the difference depends largely on the amount of dispersion of the

variable in proportion to the magnitude of the mean (cf. Chap.

% f 1 VIII., Question, 8). It is necessarily zero, it should be noticed, if
J?*

4

? even a single value of X is zero, and it may become imaginary if |'l

. y
^

' negative values occur. Excluding these^cases, the,^<alue of the ^
^

*

.
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1 ”

i . .ktf ^ .f ^
^

^ wVi 3. <.Z 'jM < X : Xv

A .
.ft..*.* ... I ,. ... ti# *

ft?*'
'

X*
1

>v , ',,,2.^
j

v i o -if

.

'!

n ,Ah-



124 THEORY OF STATISTICS.

geometric mean is always determinate and is rigidly defined. The
computation is a little long, owing to the necessity of taking

logarithms : it is hardly necessary to give an example, as the

method is simply that of finding the arithmetic fnean of the

logarithms of X (instead of the values of X) in accordance with

equation (11). If there are many observations, a table should be

drawn up giving the frequency-distribution of log X
,
and the

mean should be calculated as in Examples i. and ii. of §§ 9 and 10.

The geometric mean has never come into general use as a repre-

sentative average, partly, no doubt, on account of its rather

;
troublesome computation, but principally on account of its some-

Jwhat abstract mathematical character (c/. § 4 (c
)

) : the geometric

. Hnean does not possess any simple and obvious properties which

render its general nature readily comprehensible.

23. At the same time, as the following examples show, the

mean possesses some important properties, and is readily treated

algebraically in certain cases.

(a) If the series of observations X consist of r component
series, there being W

1
observations in the first, X

2
in the second,

and so on? the geometric mean G of the whole series can be

readily expressed in terms of the geometric means Gv etc., of

the component series. For evidently we have at once (as in § 13

(*))-

N. log (f s.Xv log <?! 4- iT2 . log (?
2 + .... + Nr log Gr . (12)

(
b

)

The geometric mean of the ratios of corresponding observa-

tions in two series is equal to the ratio of their geometric means.
For if

X^X
1
/X

2,

log X— log X
l
- log Xj,

then summing for all pairs of X
;i

J

s and X
2
\s,

G—GJG^ . . . (13)

(c) Similarly, if a variable X is given as the product of any
number of others, i.e. if

X==XrX2
.X

8 .... X,

Xv X
2, . ... Xr denoting corresponding observations in r

different series, the geometric mean G of X is expressed in terms
of the geometric means Gv G.>, . ... Gr of Xv X2 ,

.... X„hy
the relation

G~GvG2
.G,

. . . . Gr . .
. (14)

i- That is to say, the geometric mean of the product is the product
1 of the geometric means.
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24. The use of the geometric mean finds its simplest application

in estimafcing-the numbers of a population midway between two
epochs (say, two census years) at which the population is known.
If nothing is known concerning the increase of the population

save that the numbers recorded at the first census were P0 and at

the second census n years later Pm the most reasonable assump-

1801 11 21 31 . 41 51 61 71 31 31 1901

Census year .

Fig. 24.—Showing the Populations of certain rural counties of England
for each Census year from 1801 to 1901.

tion to make is that the percentage increase in each year has

been the same, so that the populations in successive years form a

geometric series, P
Q
r being the population a year after the first

census, PQ
r2 two years after the first census, and so on, and

P„ = P
0
.r» .... (15)

The population midway between the two censuses is therefore

pm=p0
y‘»=(P

0
.pnf . . . (16)
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i.e. the geometric mean of the numbers given by the two censuses.

This result mush however, be used with discretion/ The rate of

increase of population is not necessarily, or even usually, constant

over any considerable period of time : if it were * so, a curve

representing the growth of population as in fig. 24 would be

continuously convex to the base, whether the population w$re

increasing or decreasing. In the diagram it will be seen that

the curves are frequently concave towards the base, and similar

results will often be found for districts in which the population is

not increasing very rapidly, and from which there is much
emigration. Further, the assumption is not self-consistent in any
case in which the rate of increase is not uniform over the entire

area—and almost any*area can be analysed into parts which are not

similar in this respect. For if in one part of the area considered

the initial population is P0 and the common ratio R, and in the

remainder of the area the initial population is p0
and the common

ratio r, the population in year n is given by

Pn+P„=P
This does ciot represent a constant rate of increase unless R~r.
If then, for example, a constant percentage rate of increase be

assumed for England and Wales as a whole, it cannot be assumed
for the Counties : if it be assumed for the Counties, it cannot be
assumed fo^ the country as a whole. The student is referred to

refs. 14, 15 for a discussion of methods that may be used for the

consistent estimation of populations under such circumstances.

25. The property of the geometric mean illustrated by equation

; (13) renders it, in some respects, a peculiarly convenient form of

average in dealing with ratios, i.e. “ index-numbers,” as they are

termed, of prices. Let

Y' Y" Ynt Yn

hv jcv x:% x-j

X'
2, xvx'y. *

. ..

denote the prices of X commodities in the years 0, 4 2
Further, let i/Xq, and so on, so that

y y" y'" V11
1

10>
J

10>
1

10> • • * x 10
y> Ytf V"'1 20J 1

20>
1

20>

yn... I M

represent the ratios of the prices of the several commodities in years

4 2, . ... to their prices in year 0. These ratios, in practice

multiplied by 100, are termed index-numbers of the prices of the
several commodities, on tlie year 0 as base. Evidently some
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form of average of the TJ

s for any given year will afford an
indication of the general level of prices for that year, provided the

commodities chosen are sufficiently numerous and representative.

The question* is, what form of average to choose.
Ti? ~

mean be chosen, and 6r
10,

If the.geometric

<r20 denote the geometric means of the

@2Q

ft10

Yli

hr,

(ra

V"1
20 11m

'

l
TV l

f
Y"

'

1
10

.

yt>f
1

10

‘ '
f

-r. -ar
2

A'"., N
1

Hi
JTj

*
\rttt * * •

• A'V 1

y"1
21

*

yf/t -

1
21

* * • • Y*zi) l-

(17)

From the first form of this equation we see that the ratio of the

geometric mean index-number in year 2 to that in year 1 is

identical with the geometric mean of the ratios for the index-

numbers of the several commodities. A similar property does

not hold for any other form of average : the ratio of the arithmetic

mean index-numbers is not the same as the arithmetic mean of

the ratios, nor is the ratio of the medians the median of the

ratios. From the second and third forms of the equation it

appears further that the ratio of. the geometric mean index-

number in year 2 to that in year 1 is independent of the prices in

the year first chosen as base (i.e. year 0), and is identical with the

geometric mean of the index-numbers for year 2, on year 1 as

base. Again, a similar property does not hold for any other form

of average. If arithmetic means of the index-numbers be taken,

for example, the ratio of the mean in year 2 to the mean in year

1 will vary with the year taken as base, and will differ more or

less from the arithmetic mean ratio of the prices in year 2 to the

prices of the same commodities in year 1

;

the same statement is

true if medians be used. The results given by the use of the

geometric mean possess, therefore, a certain consistency that is

not exhibited if other forms of average are employed. It was

used in a classical paper by Jevons (ref. 4), though not on quite

the same grounds, hut has never been at all generally employed.

26. The general use of the geometric mean has been suggested

on another ground, namely, that the magnitudes of deviations

appear, as a rule, to be dependent in some degree on the magni-

tude of the average
;
thus the length of a mouse varies less than

the stature of a man, and the height of a shrub less than that of

a tree. Hence, it is argued, valuations in such cases should he

measured rather by their ratio to, than their difference from, the

average ;
and if this is done, the geometric mean is the natural

average to use. If deviations be 'measured in this way, a
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deviation Gjr will be regarded as the equivalent of a deviation r.G,

instead of a deviation - x as the equivalent of a deviation + x.

If a distribution take the simplest possible form when relative

deviations are regarded as equivalents, the frequency of deviations

between G/s and Gjr will be equal to the frequency of deviations

between r.G and s.G. The frequency-curve will then be sym-

metrical round log G if plotted to log X as base, and if there
r
be

a single mode, log G will be that mode

—

& logarithmic or geometric

mode
,
as it might be termed : G will not be the mode if the distri-

bution be plotted in the ordinary way to values of X as base.

The theory of such a distribution has been discussed by more than

one author (refs. 2, 8, 9). The general applicability of the assump-
tion made does not*however, appear to have been very widely

tested, and the reasons assigned have not sufficed to bring the

geometric mean into common use. It may be noted that, as the

geometric mean is always less than the arithmetic mean, the

fundamental assumption which would justify the use of the former

clearly does not hold where the (arithmetic) mode is greater than

the arithmetic mean, as in Tables X. and XI. of the last chapter.

I .27, TM Harmonic Mean.—The harmonic mean of a series of

•quantities is the reciprocal of the arithmetic mean of their

Jreciprocals, that is, if II be the harmonic mean,

s
* 08

)

The following illustration, the result of which is required for an
example in a later chapter (Chap. XIII. §11), will serve to show
the method of calculation.

The table gives the number of litters of mice, in certain

breeding experiments, with given numbers (X) in the litter. (Data
from A. D. Darbishire, Biometrika, iii. pp. 30, 31.)

Number in

Litter.

X
Number of

Litters.

: /.

f/X

1 7 7*000

2 11 5*000
3' 16 5*333

4 17 4*250

. 5 26 5*200

6 31 5*167

7 11 1*571

8 1 0*125

9 • 1 0*111

— 7 121 34*257
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Whence, 1/77= 0*2831, fl~ 3*532. The arithmetic'mean is 4*587,

or more than a unit greater.

If the prices
s
of a commodity at different places or times are

stated in the form “so much for a unit of money,” and an average

price obtained by taking the arithmetic mean of the quantities

solely for a unit of money, the result, is equivalent to the harmonic
mean of prices stated in the ordinary way. Thus retail prices of

eggs are usually quoted in England as “ so many to the shilling.”

Supposing we had 100 returns of retail prices of eggs, 50 returns

showing twelve eggs to the shilling, 30 fourteen to the shilling,

and 20 ten to the shilling
;
then the mean number per shilling

would be 12*2, equivalent to a price of 0*984d. per egg. But
if the prices had Been quoted in the form u^ual for other com-

modities, we should have had 50 returns showing a price of Id.

per egg, 30 showing a price of 0*857d., and 20 a price of l*2ch:

arithmetic mean 0*997d,, a slightly greater value than the har-

monic mean of 0*984. The official returns of prices in India were,

until 1907, given in the form of “Sers (2*057 lbs.) per rupee.”

The average annual price of a commodity was based on half-

monthly prices stated in this form, and “ index-numbers ” were

calculated from such annual averages. In the issues of “ Prices

and Wages in India” for 1908 and later years the prices have

been stated in terms of “rupees per mauncl (82*286 lbs.).” The
change, it will be seen, amounts to a replacement of theharmonic
h}T the arithmetic mean price.

The harmonic mean of a series of quantities is always lower

than the geometric mean of the same quantities, and, a fortiori,

lower than the arithmetic mean, the amount of difference depend-

ing largely on the magnitude of the dispersion relatively to the

magnitude of the mean. (Cf Question 9, Chap. VIII,)
i!» .

'
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EXERCISES.

1. Verify the following means and medians from the data of Table VI.,

Chap. VI." p. 88.

Stature in Inches for Adult Males in

—

England. Scotland. Wales. . Ireland.

Mean . . . 67*31 68*55 6*3*62 67*78

Median , . . 67*35 68*48 66*56 67*69

In the calculation of the means, use the same arbitrary origin as in Example
ii., and check your work by the method of § 13 (b).

'

2. Find the mean weight of adult males in the United Kingdom from the
data in the last column of Table IX., Chap VI., p. 95. Also find the median
weight, and hence the approximate mode, by the method of § 20.

3. Similarly, find the mean, median, and approximate value of*the mode
for the distribution of fecundity in race-horses, Table X., Chap. VI., p. 96.

4. Using a graphical method, find the median annual value of houses

assessed to inhabited house duty in the financial year 1885-6 from the data

of Table IV., Chap. VL, p. 83.

‘

5. (Data from Sauerbeck, Jour. Roy. Stat, Soe.
3
March 1909.) #Tke figures

in columns 1 and 2 of the small table below show the index-numbers (or per-

centages) of prices of certain animal foods in the years 1898 and 1908, on
their average prices during the years 1867-77. In column 3 have been added
the ratios of the index-numbers in 1908 to the index-numbers in 1898, the
latter being taken as 100.

Find the average ratio of prices in 1908 to prices in 1898, taken as 100 :

—

(1) From the arithmetic mean of the ratios in col. 3. .

(2) From the ratio of the arithmetic means of cols. 1 and 2.

(8) From the ratio of the geometric means of cols. 1 and 2.

(4) From the geometric mean of the ratios in col. 3.

JSFote that, by § 25, the last two methods must give the same result.

|

Index- number of price in
;

Ratio

Commodity. 1898. 1908. 08/98.

1. 2. 3.

1, Beef, prime 78 88 112*8

2. Beef, middling . . ,
,

72 90 125*0

3. Mutton, prime . 84 92
j

109*5

4. Mutton, middling . . : 67 95 141*8

5. Pork . . ... 87 83 V 95*4

6. Bacon . ,
. . 73 84 107*7

|
7. Butter . . 76 * 91 119*7
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6. (Data from census of 1901.) 'The table below shows the population of

the rural sanitary districts of Essex, the urban sanitary districts (other than

the borough of West Ham), and the borough of West Ham, at the censuses

of 1891 and 1901. Estimate the total population of th^county at a date

midway between the two censuses, (1) on the assumption that the percentage

rate of increase is constant for the county as a whole, (2) on the assumption

that the percentage rate of increase is constant in each group of districts and
the borough ofWest Ham

.

Essex,

Population.

|

1891. 1901.

Rural districts . . .

West Ham ....
Other urban'districts .

232,867
204,903
345,604

240,776
267,358
575,864

Total 783,374 1,083,998

7. (Data from Agricultural Statistics for 1905, Cd. 3061, 1906.) The
following statement shows the monthly average prices of eggs in Great
Britain in 1905, as compiled from the weekly returns of market prices for

first and second quality British eggs, per 120 ;

—

Month.
First

Quality.

Second
Quality.

January
s. d.

13 0

s. d.

11 0
February . . . i 11 0 9 0
March . . . 8 0 6 0

April . 7 6 6 6

May , 8 0 7 6

June 8 6 1 8 0
July 9 6 8 6

August . 11 0 10 0
September . . . 11 6 10 6
October . 14 0 12 6

November . , . 18 0 16 0

December . , . 17 6 15 0

Mean for year
.

H S|; 10 Oh

What would have been the mean price for the year in each case if the whole-
sale prices had been recorded In the same way as retail prices, i.e. at so many
eggs per shilling ? State your answer in the form of the equivalent price per

120, and obtain it in the shortest way by taking the harmonic mean of the
above prices (cf. § 27).

8. Supposing the frequencies of vajps 0, 1, 2, ... of a variable to be
given by the terms of the binomial series' #

„
' n(n- 1W „ 0

2°, n.q»-i.p, —̂ -gn~V» ....

where p + g
~

1
,
find the mean.



CHAPTER Till

MEASURES OF DISPERSION, ETC.

1. Inadequacy of the range as a measure of dispersion—2-13. The standard
deviation: its definition, calculation, and properties— 14-19. The
mean deviation : its definition, calculation, and properties—20-24. The.

quartile deviation or semi-interquartile range—25. Measures of

relative dispersion—26. Measures of asymmetry or skewness—27-30.

The method of grades or percentiles.

1. The simplest possible measure of the dispersion of a series of

values of a variable is the actual range, i.e. the difference -between

the greatest and least values observed; While this is frequently

quoted, it is as a rule the worst of all possible measures for any
serious purpose. There are seldom real upper and lower limits'

to the possible values of the variable, very large or very small

values being only more or less infrequent : the range is therefore

subject to meaningless fluctuations of considerable magnitude
according as values of greater or less infrequency happen to

have been actually observed. Note, for instance, the figures of

Table IX., Chap. VI. p. 95, showing the frequency distributions of

weights of adult males in the several parts of the United King-

dom. In Wales, one individual was observed with a weight of

over 280 lbs., the next heaviest being tinder 260 lbs. The
addition of the one very exceptional individual has increased the

range by some 30 lbs., or about one-fifth. A measure subject to

erratic alterations by casual influences in this way is clearly not

of much use for comparative purposes. Moreover, the measure
takes no account of the form of the distribution within the limits

of the range
;

it might well happen that, of two distributions

covering precisely the same range of variation, the one showed
the observations for the most part closely clustered round the

average, while the other exhibited an almost even distribution of

frequency over the whole range. Clearly we should not regard

two such distributions as exhibiting the same dispersion, though
they exhibit the same range. Some sort of measure of dispersion

is therefore required, based, like the averages discussed in the last

133
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chapter, on all the observations made, so that no single observation

can have an unduly preponderant effect on its magnitude
;
indeed,

the measure should possess all the properties laid down as desir-

able for an average in § 4 of Chap. VII. There r are three such

measures in common use—the standard deviation, the mean
deviation, and the quartile deviation-or semi-interquartile range,

of which the first is the most important.

I 2. The Standard Deviation.—The standard deviation is the

fequare root of the arithmetic mean of the squares of all deviations,

deviations being measured from tbe arithmetic mean of the

Observations. If the standard deviation be denoted by o-, and a

deviation from the arithmetic mean by sc, as in the last chapter,

then the standard deviation is given by the equation

<^=yS(*2
) . . • . (1)

To square all the deviations may seem at first sight an artificial

procedure, but it must be remembered that it would be useless to

take the mere sum of the deviations, in order to obtain a measure
of dispersion, since this sum is necessarily zero if deviations be

taken from the mean. In order to obtain some quantity that

shall vary with the dispersion it is necessary to average the

deviations by a process that treats them as if they were all of the

same sign, and squaring is the simplest process for eliminating

signs which leads to results of algebraical convenience.

3. A quantity analogous to. the standard deviation may be

defined in more general terms. Let A be any arbitrary value of

X, and let £ (as in Chap. VIL § 8) denote the deviation of X
from A ;

i.e. let

£«X~A.
Then we may define the root-mean-square deviation s from the

origin A by tbe equation

• | • (
2)

In terms of this definition the standard deviation is the root-

mean-square deviation from the mean. There is a very simple

relation between the standard deviation and the root-mean-square

deviation from any other origin. Let

M~A~d. , . , * (3)

£
2 _ tX

2 q. 2x.d + d%

2(|") + 2d.%(x) + F.d\

so that

Then
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But the' sum of the deviations from the mean
the second term vanishes, and accordingly

Hence the root-mean-square deviation is least when deviations

are measured from the mean, i.e. the standard deviation is the least

possible root-mea il-square deviation.

S(4'
2
), or l(f.E'

2
)

if we are dealing with a grouped distribution

and /is the frequency of is sometimes termed the second moment
of the distribution about A, just as 1(E) or S(f*i) is termed
the first moment (of. Chap. YII. § 8) : we shall not make use

of the term in the present work. Generally, S(f.g
n
)

is termed
the -wth moment.

4. If cr and d are the twosid.es of a right-Tingled triangle, $ is

the hypotenuse. If, then, ME be the vertical through the

mean of a frequency-distribution (fig. 25), and MB be set off

equal to the standard deviation (on the same scale in which the

variable X is plotted along the base), BA will be the root-mean-

square deviation from the point A . This construction gives a

concrete idea of the way in which the root-mean-square deviation

depends on the origin from which deviations are measured. It

will be seen that for small values of cTthe difference of s from cr

will be very 'minute, since A will lie very nearly on the circle

drawn through M with centre S and radius SM : slight errors

in the mean due to approximations in calculation will not, there-

fore, appreciably affect the value of the standard deviation.

5. If we have to deal with relatively few, say thirty or forty,

ungrouped observations, the method of calculating the standard

deviation is perfectly straightforward. It is illustrated by the

figures given below for the estimated average earnings of
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agricultural labourers in 38 ruval unions. The values (earnings)

are first of all totalled and the total divided by iY to give the

arithmetic mean M, viz. 15s. ll^-§d., or 15s. lid. to the nearest

penny. The earnings being estimates, it is not necessary to take

the average, to any higher degree of accuracy. Having found

the mean, the difference of each observation from the mean is

next written down as in col. 3, one penny being taken as the

unit : the signs are not entered, as they are not wanted, but the

work should be checked by totalling the positive and negative

differences separately. [The positive total is 300 and the

negative 290, thus checking the value for the mean, viz. 15s.

lid. + 10/38.}

Finally, each difference is. squared, and the squares entered in

col. 4,—tables of squares are useful for such work if any of the

differences to be squared are large (see list of Tables, p. 356).

The sum of the squares is 16,018. Treating the value taken for

the mean as sensibly accurate, we have

—

16018
s

38
:

= 20-5<l

= 421*5

If we wish to be more precise we can reduce to the true mean
by the of equation (4), as follows :— r

18,018
r

38
10

Hence

^=^ = 0*2632; cP
38

<T2 = ,S
*2 — cP

-421-5263

= 00693

5 421*4570
= 20*529d

Evidently this reduction,- in the given case, is unnecessary,

illustrating the fact mentioned at the end of § 4, that small

errors in the mean have little effect on the value found for the
standard deviation. The first value is correct within a very
small fraction of a penny.
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VIII,—MEASURES OF DISPERSION, ETC.

Caic lation of the Standard DEVfATiON: Example i .—Calculation of

Mem '[and /Standard fiematimi /ftp- -/a:
' Skgrit/^^'ies'./of Observations . mn-

.grouped. Estimated Average Weekly Earnings of Agricultural' Labourers
in Thirty-eight Rural Unions > in. 1892-3,

,
(W. Little : Labour Com-

mission; Report
,
yol. v., parti., 1894.) .

1. 2 • FI 3. 4.
.

1

Union.
Earnings
(Shillings

and Pence).
-v

Difference

| (Pence).

(Difference)2 1,

I
2

*

s. d.

1. Glendale . 20 9 58 3,364
2. Wigton . 20 3 52 2,704

3. Garstang .
;

.. . 19 8 * 45 2,025

4. Belper 18 6 31 961

5. Nantwich . 17 8 21 441

6. Atchani 17 6 19 361

7. Driffield . 17 1 14 196

8. Uttoxeter . 17 0 13 169

9. Wetherby . 17 0 13 169

10. Easingwold 16 11 12 144

11. Southwell . 16 6 7 „ 49

12. Hollingbourn 16 4 5 25

13. Melton Mowbray 16 3 4 16

14. Truro 16 3 4 16

15. Godstone . 16 0 1 1

16. Louth 16 0 1 *
1

17. Brixworth . 15 9 > 2 ' 4

18. Crediton . 15 8 3 9

19. Holbeach , 15 6 5 25

20. Maldon 15 6 5 25

21. Monmouth 15 4 7 49

22. St Neots . 15 3 8 64

23. Swaffham . 15 0 11 121

24. Thakeham

.

15 0 11 121

25. Thame 15 0 11 121

26. Thingoe . 15 0 11 121

27. Basingstoke 15 0 11 121

28. Cirencester 15 0 11 121

29. N.Witehford . 14 10 13 169

30. Pewsey 14 9 14 196

31. Bromyard . 14 9 14 196

32. Wantage . 14 9 14 196

33. Stratford-on-Avon 14 7 16 256

34. Dorchester 14 6 17 289

35. Woburn 14 6 17 289

36. Buntingford 14 4 19 361

37. Pershore . 13 6 29 841

33. Langport . 12 6 41 1,681

Total 605 8
{

+300
-290 |

16,018

i

’

L
:

'

.

' V *
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The figures dealt with in this illustration are estimates of the

weekly earnings of the agricultural labourers, i.e. they include

allowances for gifts in kind, such as coal, potatoes, cider, etc. The
estimated weekly money wages are, however, also- given in the

same Report, and we are thus enabled to make an interesting

comparison of the dispersions of the two. It might be expected

that earnings would vary less than wages, as his earnings and not

the mere money wages he receives are the important matter to

the labourer, and as a fact we find

Standard deviation of weekly earnings . .
' 20*5(1.

„ • „ „ wages . 26*0d.

The arithmetic meaifwage is 13s. 5d.

6. If we have to deal with a grouped frequency-distribution,

the same artifices and approximations are used as in the calculation

of the mean (Chap. VII. §§ 8, 9, 10). The mid-value of one of

the class-intervals is chosen as the arbitrary origin A from which

to measure the deviations £, the class-interval is, treated as a

unit thrqpghout the arithmetic, and all the observations within

any one class-interval are treated as if they were identical with

the mid-value of the interval. If, as before, we denote the

frequency in any one interval by /, these / observations con-

tribute /£
2 to the sum of the squares of deviations and we

have— *

The standard deviation is then calculated from equation (4).

7. The whole of the work proceeds naturally as an extension of

that necessary for calculating the mean, and we accordingly use

the same illustrations as in the last chapter. Thus in Example
ii. below, cols. 1, 2, 3, and 4 are the same as ‘those we have already

given in Example i. of Chap. VII. for the calculation of the mean.
Column 5 gives the figures necessary for calculating the standard
deviation, and is derived directly from col. 4 by multiplying the

figures of that column again by |. Thus 90 x 5 = 450, 192 x 4 =
768, and so on. The work is therefore done very rapidly. The -

remaining steps of the arithmetic are given below the table
; the

student must be careful to remember the final conversion, if

necessary, from the class-interval as unit to the natural unit

of measurement. In this case the value found is 2*48 class-

intervals, and the class-interval being half a unit, that is 1*24

per cent.
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Calculation of the 'Standard Deviation-: .Example, it—Calculation of
the Standard Deviation of the Percentages of the Population in receipt of
Relief in addition to the Mean, from the figures of Table VIII. of
Chap. Fly (Cf, the work for the mean alone, p. 111.)

(1)

Percentage
in receipt

of Relief.

(2)

Frequency.

f /

(S)

Deviation
from Value d.

(4)

Product.

A

(5)

Product.

ff-

1 18 - 5 90 450
1*5 48 - 4 192 768
2 72 - 3 216 648
2*5 89 — ,2 178 356
3 . 100 - 1 100 100

3*5 90 0 -776 —
4 75 -

: + 1 75 75
4*5 60 : + 2 120 240
5 40 + 3 120 360
5*5 21 + 4 S4 *336

6 11 + 5 55 275
6*5 5 + 6 30 180

' 7
|

1 ' +7
. 7 49

7*5 1 1 + 8 8 64
8 + 9 —

.

j

* —
8*5 ”i + 10 10 100

Total
...
632 —

; ;

,

+ 509
-

I

I*xji

'

V'

'

From previous work, p. Ill, M~A~d~ -0*4225 class-intervals.

3(/^)„4001_
N "" 632' 3a0/ ‘

* V <r
2=8*3307 - (*4225)2

= 6*1522.

or = 2 *48 intervals= 1 *24 per cent.

To illustrate again the value of the standard deviation for

purposes of comparison, figures are given below showing the

means and standard deviations of similar distributions for a series

of years from 1850. It will be seen that not only did the mean
decrease during the period, but the standard deviation decreased

to an equally marked extent, having been halved between

1850 and 1891*
; the average was lowered, and at the same time

the percentages of the population in receipt of relief clustered

much more closely round the lower average.
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Means and Standard Deviations of the Distributions of Pauperism (Percentage

of the Population in receipt of Poor-law Relief) in the Unions of England
and Wales since 1850. (From Yule, Jour . Boy. Stat. Soc vol. lix.,

1896, figures slightly amended.) <v

Year.

Percentage of the Population

in receipt of Relief.

Arithmetic
Mean.

Standard
Deviation.

1850 6-51 2*50

1860 5*20 2-07

1870 5*45 2-02

1881 3*68 1-36

1891 1
3‘29 1-24

8. In the table given on p. 141 (Example iii.), the calculation of

the standard deviation is similarly shown for the distribution of

the statures of adult males in the British Isles, the work being

continued from the stage which it reached for the calculation of

the mean in Example ii. of Chap. VII. The steps of the arith-

metic hardly call for further explanation, but it may be noted that

the class-interval being a unit in this case, no conversion of

the standard deviation from fiass4ntervals to units is required.

9. The student must remember* as in the case of the calculation

of the mean, that the treatment of all values within each class-

interval as if they were identical with the mid-value of the interval

is an approximation and no more (cf. Chap. VII. § 11), though,

for a distribution of the symmetrical or moderately asymmetrical
type with a class-interval not greater than one-twentieth or so

of the range, the approximation may be a very close one. But
while the value of the arithmetic mean may be either increased

or decreased by grouping, in the case of distribution's which are

not more than slightly asymmetrical, the standard deviation of

such distributions tends to be increased, and the increase is the

greater the cruder the grouping. We give an approximate
correction for this effect later (Chap. XI. § 4). The student is

recommended to test for himself the effect of grouping in two
or three cases.

1

10. It is a useful empirical rule to remember that a range of

six times the standard deviation usually includes 99 per cent, or

.{more of all the observations in the case of distributions of the

Symmetrical or moderatelyAsymmetrical type. Tims in Example
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Calculation of the Standard Deviation: Example iii.

—

'Calculation

ofike Standard Deviation of StaMre qf[:Male^ Malts- i&tM: British "Isles-

from the figures of Table VIi, -p, '8S. (Of. p. 112 for the calculation of.

mean along*')

(1)

Height.
. Inches.'' ,

(2)

.. Frequency.

/.

(3)

Deviation
from

Value A.

£

;

(4)

Product.

m

' (5)

Product

/•I
2
*

57- 2 -10 20 200
58- 4 - 9 36 324
59- 14 - 8 412 896
60- 41 - 7 287 2,009
61- 83 - 6 498 2,988
6*2- 169 - 5 845 4,225
63- 394 - 4 1576 6,304
64- 669 - 3 2007 6,021
65- 990 - 2 19S0 3,960
66- 1223 - 1 1223

|

1,223

67- 1829 0 -8584
l

r>

68- 1230 + 1 1230 1,230
69- 1063 4* 2 21*26

1
4,252

70- 646 + 8 1938 *5,814
71- 392 + 4 1568 6,272
72- 202 + 5 1010 5,050
73- 79 4* 6 474 2,844
74- ,

32 4- 7 ; 224 1,568
75-

'

16 4- 8 128 1,024
76- 5 4- 9 45 405
77- 2 + 10 20 200

Total 85S5 — + 8763 56,809

From previous work, M- A=d= + *0209 class-intervals or inches.

S(/.£2)_ 56809

N 8585/
= 6 '6172.

<r
2= 6 6172 - (*0.209)®

= 6 6168.

cr= 2*57 class-intervals or inches.

ii. the standard deviation is 1*24 per cent.
;
six times this is 7*44

per cent., and a range from 0*75 to 8*19 per cent, includes all

but one observation out of 632 . In Example iii. the standard

deviation is 2*57 in., six times this is 15*42 in., and a range from,

say, 60 in. to 75*4 in. includes all but some 37 out of 8585

individuals, i.e. about 99*6 per cent. * This rough rule serves to
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give a more definite and concrete meaning to the standard

deviation, and also to check arithmetical work to some extent™
sufficiently, that is to say, to guard against very gross blunders.

It must not be expected to hold for short series of observations :

in Example i., for instance, the actual range is a good deal less

than six times the standard deviation.

11. The standard deviation is the measure of dispersion which

it is most easy to treat by algebraical methods, resembling in this

respect the arithmetic mean amongst measures of position. The
majority of illustrations of its treatment must be postponed to a

later stage (Chap. XL), but the work of § 3 has already served as

one example, and we may take another by continuing the work of

§ 13 (&), Chap. VII. «In that section it was shown that if a series

of observations of which the mean is M consist of two component
series, of which the means areM

x
and M

2
respectively,

N.M~NVMX +N2
M2,

N
x
and Nt being the numbers of observations in the two com-

ponent series, and N~ JST
X + the number in the entire series.

Similarly* the standard .deviation cr of the whole series may be

expressed in terms of the standard deviations cr
x
and cr

2
of the

components and their respective means. Let

€ - M~d
x

M
2
~~M^d

2.

Then the mean-square deviations of the component series about
-the mean M are, by equation (4), <r

x
2 +d

x
2 and cr

2
z +dj respec-

tively. Therefore, for the whole series,

V.o-2 = iY
x
(a-

x
2 + df) .+#2

(cr,2 + d 2
) . . (5)

If the numbers of observations in the component series be equal

and the means be coincident, we have as a special case

—

(r2= |-(<T
1
2 + <r

2
2
) (6)

so that in this case the square of the standard deviation of the
whole series is the arithmetic mean of the squares of the standard
deviations of its components.

It is evident that the form of the relation (5) is quite general :

if a series of observations consists of r component series with
standard deviations cr

x , cr
2 ,

. . . <rn and means diverging from the
general mean of the whole series by dp d2,

- . . dn the standard
deviation or of the whole series is given (using m to denote any
subscript) by the equation

—

N.v*= + Z(ATm.dJ) . . . (7)
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Again, as in § 13 of Chap. VIL, it- is convenient to note, for the

checking of arithmetic, that if the same arbitrary origin be used

for the calculation of the standard deviations in a number of

component distributions we must have
'

+s</;.£,2) . (8)

12. As another useful illustration, let us find the standard

deviation of the first M natural numbers. The mean in this case

is evidently (JV-F l)/2. Further, as is shown in any elementary
Algebra, the sum of the squares of the first 2V

r
natural numbers is

F(W+l)(2F+l)

The standard deviation cr is therefore given t>y the equation-

—

o-
2 « i(iV+ 1)(2W+ 1)

- i(iV+ 1)2,

that is, a* = TV(A
r2 ~l) . . . . (9)

This result is of Service if the relative merit of, or the relative

intensity of some character in, the different individuals of a series

is recorded not by means of measurements, e.g. marks awarded on
some system of examination, but merely by means

0
of their

respective positions when ranked in order as regards the character,

in the same way as boys are numbered in a class. With M
individuals there are always A” .ranks

,
as they are termed,

whatever the character, and the standard deviation IS therefore

always that given by equation (9).

Another useful result follows at once from equation (9), namely,

the standard deviation of a frequency-distribution in which all

values of X within a range ±1/2 on either side of the mean are

equally frequent, values outside these limits not occurring, so that

the frequency-distribution may be represented by a rectangle. The
base l may be supposed divided into a very large numberM of equal

elements, and the standard deviation reduces to that of the first N
natural numbers when N is made indefinitely large. The single

unit then becomes negligible compared with 2T, and consequently

.... (
10)

13. It will be seen from the preceding paragraphs that, the

standard deviation possesses the majority at least of the properties

which are desirable in a measure of dispersion as In an average

(Chap. VII. § 4). It is rigidly defined
;

it is based on all the

observations made : it is calculated with reasonable ease
;

it lends

itself readily to algebraical treatment
;
and we may add, though the

student will have to take the statement on trust for the present,

that it is, as a rule, the measure least affected by fluctuations of



144 THEORY OF STATISTICS.

sampling. On the other hand, it may be said that its general

nature is not very readily comprehended, and that the process of

squaring deviations and then taking the square root of the mean
seems a little involved. The student will, however, soon surmount
this feeling after a little practice in the calculation and use of the

constant, and will realise, as he advances further, the advantages

that it possesses. Such root-mean-square quantities, it may be

added, frequently7- occur in other branches of science. The
standard deviation should always be used as the measure of disper-

sion, unless there is some very definite reason for preferring another

measure, just as the arithmetic mean should be used as the measure

of position. It may be added here that the student will meet with

the standard deviation under many different names, of which we
have adopted the most recent (due to Pearson, ref. 2) : many of

the earlier names are hardly adapted to general use,, as they bear

evidence of their derivation from the theory of errors of observation.

Thus the terms “ mean error” (Gauss), “error of mean square”

(Airy), and “mean square error” have all been used in the same
sense. The square of the standard deviation, and also twice the

square, Save been termed the “ fluctuation ” (Edgeworth): the

standard deviation multiplied by the square root of 2, the
“ modulus ” (Airy),—the student will see later the reason for

the adoption of the factor. The reciprocal of the modulus has

been termed the (‘precision” (Lexis).

3 , 14. The Mean Deviation.-—The mean deviation of a series of

1

values of a variable is the arithmetic mean of their deviations

from some average, taken without regard to their sign. The
deviations may be measured either from the arithmetic meair or

fi*om the median, but the latter is the natural origin to use. Just

as the root-mean~squa,re deviation is least when deviations are

measured from the arithmetic mean, so the mean deviation is

least when deviations are measured from the median. For
suppose that, for some origin exceeded by m values out of A7

,
the

mean deviation has a value A. Let th# origin be displaced by
an amount c until it is just exceeded by m - 1 of the values only,

i.e. until it coincides with the with value from the . upper end of

the series. By this displacement of the origin the sum of devia-

tions in excess of the mean is induced by m.g, while the sum of

deviations in defect of the mean is increased by The
new mean deviation is therefore c,

t
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The new mean deviation is accordingly less than the old so long as

m>lK
That is to say, if ffl he even, the mean deviation is constant for

all origins within the range between the JS
T/'2th and the {J72 4- l)th

observations, and this value is the least : if if be odd, the mean
deviation is lowest when the origin coincides with the (2F+ l)/2th

observation. The mean deviation is therefore a minimum when
deviations are measured from the median or, if the latter be
indeterminate, from an origin within the range in which it lies.

15. The calculation of the mean deviation either from the mean
or from the median for a series of ungrouped observations is very

simple. Take the figures of Example i. (p. 13Z) as an illustration.

We have already found the mean (15s. lid. to the nearest penny),

and the deviations from the mean are written down in column 3.

Adding up this column without respect to the sign of the devi-

ations we find a total of 590. The mean deviation from the mean
is therefore 590/38 = 15*53d. The mean deviation from the

median is calculated in precisely the same way, but the median
replaces the mean as the origin from which deviations are measured.

The median is 15s. fid. The deviations in pence run 63, 57, 50,

36, and so on; their sum is 570 ;
and, accordingly, the mean

deviation, from the median is 15d. exactly.

16. In. the case of a grouped frequency-distribution,<*fche sum
of deviations should be calculated first from the centre of the

class-interval in which the mean (or median) lies, and then

reduced to the mean as origin. Thus in the case of Example ii.

the mean is 3*29 per cent, and lies in the class-interval centring

round 3*5 per cent. We have already found that the sum of

deviations in defect of 3*5 per cent, is 776, and of deviations in

excess 509 : total (without regard to sign) 1285,—-the unit of

measurement being, of course, as it is necessary to remember, the

class-interval. If the number of observations below the n^ean is

and above the mean i£
2,
and M - A - d

y
as before, we have to

add A^.d.to the sum found and subtract Nrd. In the present

case Aq = 327 and W2 = 305, while d~ -0*42 class-intervals,

therefore

4#! - w
2)
= - 0*42 X 22 = - 9*2,

•'and the sum of deviations from the mean is 1285 - 9*2 = 1275*8.

Hence the mean deviation from the mean is 1275*8/632 = 2*019

class-intervals, or T01 per cent.

17. The mean deviation from the median should be found in

precisely similar fashion, but the mid-value of the interval in

which the median (instead of the mean) lies should, for con-

10
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venience, be taken as origin. ' Thus in Example ii. the median is

(Chap. YII. § 15) 3-195 per cent. Hence 3*0 per cent, should be

taken as the origin, d = f 0‘39 intervals, = 327, X2 = 305. The
deviation-sum with 3 0 as origin is found to be '1263, and the

correction is +0 39 x 22— 4- 8*6. Hence the mean deviation

from the median is 2*012 intervals, or again 1 "01 per cent. The
value is really smaller than that of the mean deviation from the

arithmetic mean, but the difference is too slight to affect the

second place of decimals.

It should be noted that, as in the ease of the standard deviation,

this method of calculation implies the assumption that all the

values of X within any one class-interval may . be treated as if

they were the mid-^alue of that interval. This is, of course, an

approximation, but as a rule gives results of amply sufficient

accuracy for practice if the class-interval be kept reasonably small

(cf. again Chap. YL § 5). We have left it avS an exercise to the

student to find the correction to be applied if the values in each

interval are treated as if they were evenly distributed over the

interval, instead of concentrated at its centre (Question 7).

18. The mean deviation, it will be seen, can be calculated rather

more rapidly than the standard deviation, though in the case of a

grouped distribution the difference in ease of calculation is not

great. It is not, on the other hand, a convenient magnitude for

algebraical treatment
;
for example, the mean deviation of a dis-

tribution obtained by combining several others cannot in general

be expressed in terms of the mean deviations of the component
distributions, but depends upon their forms. As a rule, it is more
affected by fluctuations of sampling than is the standard deviation,

but may be less affected if large and erratic deviations lying

somewhat beyond the bulk of the distribution are liable to occur.

This may happen, for example, in some forms, of experimental

work, and in such cases the use of the mean deviation may be
slightly preferable to that of the standard deviation.

19. It is a useful empirical rule for the student to remember
that for symmetrical or only moderately asymmetrical distri-

butions, approaching the ideal forms of figs. 5 and 9, the mean
deviation k-usiaally-very nearly four-fifths of the standard devia
tion . Thus for the distribution of pauperism we have

mean deviation 1*01 _
standard deviation 1*24

In the case of the distribution of male statures in the British

Isles, Example iii., the ratio found is 080. For a short series of

observations like the wage statistics of Example i. a regular result

could hardly be expected : the actual ratio is 15*0/20*5= 0-73.
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We pointed out in § 10 that in distributions of the simple forms

referred to, a range of six times the standard deviation contains

over 99 per cent, of all the observations. If the mean deviation

be employed as* the measure of dispersion, we must substitute a

range of 7-1 times this measure.
.

'

20. The a

value Qj of the variable be determined of such magnitude that

one-quarter of all the values observed are less than Q }
and three-

quarters greater, then Qx
is termed the lower quartile. Similarly,

if a value Qs
be determined such that three-quarters of all the

values observed are less than Qs
and one-quarter only greater,

then Q3
is termed the upper quartile. The two quartiles and the

median divide the observed values of the* variable into four

classes of equal frequency. If Mi be the value of -the median, in

a symmetrical distribution

3fl ~ Tl'ly

and the difference may be taken as a measure of dispersion. But
as no distribution is rigidly symmetrical, it is usual to take as the

measure
. fe

and Q is termed the quartile deviation, or better, the semi-

. interquartile range—it is not a measure of the deviation from
any particular average: the old name probable error should be
confined to the theory of sampling (Chap. XY. § 17).

21. In the case of a short series of ungrouped observations

the quartiles are determined, like the median, by inspection..

In the wage statistics of Example L, for instance, there are

38 observations, and 38/4 — 9*5
: What is the lower quartile?

The student may be tempted to take it halfway between the

ninth and tenth observations from the bottom of the list
;

but this would be wrong, for then there would be nine

observations only below the value chosen instead of 9 ’5. The
.

quartile must be taken as given by the tenth observation

itself, which may be regarded as divided by the quartile, and
falling half above it and half below. Therefore

Lower quartile Qj — 14s. IGd.

Upper quartile Qs
~ 16s. lid.

and (J
= Q^-Q = l2-5d.

22. In the case of a grouped distribution, the quartiles, like

the median, are determined by simple arithmetical or by
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graphical interpolation (<?/. Chap. VII. §§ 15, 16). Thus for the

distribution of pauperism, Example ii., we have

6324-4 -158c
Total frequency under 2*25 per cent. = 138

Difference = 20

Frequency in interval 2*25 - 2'75 — 89

20
Whence Ql

= 2/25 -h --g x 0*5 = 2*362 per cent.

Similarly we find Qz
=4*130 „

Hence « Q==%^ = 0-884

It is left to the student to check the value by graphical

interpolation.

23, For
siife „ the. ideal forms of figs.

5 and 9, the semi-interquartile range is usually . about two-thirds

of the standard deviation. Thus for Example ii. we find

"J-m- 0-71.
O' 1*24

The distribution of statmus, Example ill., gives the ratio 0*68.

The short series of wage statistics in Example i. could not be

expected to give a result in very strict conformity with the

rule, but the actual ratio, viz. 0*61, does not diverge greatly.

It follows from this ratio that a range of nine times the semi-

interquartile range, approximately, is required to cover the same
proportion of the total frequency (99 per cent, or more) as a range
of six times the standard deviation.

24. Of the three measures of dispersion, the semi-interquartile

range has the most clear and simple meaning. It is calculated,

like the median, with great ease, and the quartiles may be found,

if necessary, by measuring two individuals only. If, e.c/., the

dispersion as well as the average stature of a group of men
is required to be determined with the least possible expenditure

of time, they may be simply ranked in order of height, and the

three men picked out for measurement who stand in the centre

and one-quarter from either end of the rank. This measure of

dispersion may also be useful as a makeshift if the calculation

of the standard deviation has been rendered difficult or impossible

owing to the employment of an irregular classification of the

frequency or of an indefinite terminal class. Such uses are,

however, a little exceptional, and, generally speaking, the
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semi-interquartile range as a measure of dispersion is not to be
recommended, unless simplicity of meaning is of primary im-

portance, owing to the lack of algebraical convenience which
it shares with the median. Further, it is obvious that the

quartile, like the median, may become indeterminate, and that

the use of this measure of dispersion is undesirable in cases of

discontinuous variation : the student should refer again to the

discussion of the similar disadvantage in the case of the median,
Chap. VII. § 14. It has, however, been largely used in the past,

particularly for anthropometric work.

2d. Measures of Relative Dispersion.-—As was pointed out in

Chapter VII. § 26, if relative size is regarded as influencing not only

the average, but also deviations from the average, the geometric

mean seems the natural form of average to use, and deviations

should be measured by their ratios to the geometric mean. As
already stated, however, this method of measuring deviations, with

its accompanying employment of the geometric mean, has never

come into general use. It is a much more simple matter to allow

for the influence of size by taking the ratio of the measure of

absolute dispersion (e.g. standard deviation, mean deviation, or

quartile deviation) to the average (mean or median) from which
the deviations were measured. Pearson has termed the quantity 1

v = 100~nIf
\e. the percentage ratio of the standard deviation to the arithmetic

ean, the coefficient of variation (ref. 7), and has used it, for

example, in comparing the relative variations of corresponding

organs or characters in the two sexes : the ratio of the quartile

deviation to the median has also been suggested (Verschaeffelt,

ref. 8). Such a measure of relative dispersion is evidently a mere
number, and its magnitude is independent of the units of

measurement employed.

26. Measures ofAsymmetry or Skewness.—If we have to compare
a series of distributions of varying degrees of asymmetry, or skew-

ness, as Pearson has termed it, some numerical measure of this

character is desirable. Such a measure of skewness should

obviously be independent of the units in which we measure the

variable

—

e.g. the skewness of the distribution of the weights of a

given set of men should not be dependent on our choice of the

pound, the stone, or the kilogramme as the unit of weight—and

the measure should accordingly be a mere number. Thus the

difference between the deviations of the two quartiles on either

side of the median indicates the existence of skewness, hut to

measure the degree of skewness we should take the ratio of this
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difference to some quantity oirthe same dimensions, e.g. tbe semi-

interquartile range. Our measure would then he, taking the

skewness to be positive if the longer tail of the distribution runs

in the direction of high values of X,

skewness •

(<i?8 - Mi) - (Mi - Q{) _<h + Q?t
- 2Mi

Q Q an

This would not be a bad measure if we were using the quartile

deviation as a measure of dispersion : its lowest value is zero,

when the distribution is symmetrical ; and while its highest possible

value is 2, it would rarely in practice attain higher numerical
values than ±1. A similar measure might be based on the mean
deviations in excess*andin defect of the mean. There is, however,

only one generally recognised measure of skewness, and that is

Pearson’s measure (ref. 9)

—

, mean mode
skewness - ——r~

—

T—r

—

-r-r.— . . (12)
standard deviation ' '

|
This is ^evidently zero for a symmetrical distribution, in which

I mode and mean coincide. No upper limit to the ratio is apparent

4 from the formula, but, as a fact, the value does not exceed unity for

Ifrequency-distributions resembling generally the ideal distributions

of fig. 9.* As the mode is a difficult form of average to determine

by elementary methods, it may be noted that the numerator of the

above fraction may, in the case of frequency-distributions of the

forms referred to, be replaced approximately by 3(mean - median),

(cf. Chap. VIL §20). The measure (12) is much more sensitive

than (11) for moderate degrees of asymmetry.
27. The Method of Percentiles. We may conclude this chapter

by describing briefly a method that has been largely used in the

past in lieu of the methods dealt with in Chapters YI. and VIL,
and the preceding paragraphs of this chapter, for summarising
such statistics as we have been considerjpg. If the values of the

variable (variates, as they are sometimes termed) be ranged in

order of magnitude, and a value P of the variable be determined
such that a percentage p of the total frequency lies below it and
100 -p above, then P is termed a percentile. If a series of per-

.
eentiles be determined for short intervals, e.g. 5 per cent., or 10
per cent., they suffice by themselves to show the general form
of the distribution. This is Sir Francis Galton’s method of

percentiles. The deciles, or values of the variable which divide

the total frequency into ten equal parts, form a natural and
convenient series of percentiles to use. The fifth decile, or value

of the variable which has 50 per cent, of the observed values
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above it and 50 per cent, below, is the median : the two quartlies
lie between the second and third and the seventh and eighth
deciles respectively, oh. b'

,':; V j.b ;V
:

28. The deciles, like the median and quartiles, may be
determined either by arithmetical or by graphical interpolation,

excluding the cases in which, like the former constants, they
become indeterminate (cf* § 24). It is hardly necessary to give
an illustration of the former process, as the method is precisely

the same as for median and quartiles (Chap. VII. § 15, and above,

§ 22). Fig. 26 shows, of course on a very much reduced scale, the

Percentage of the population'
in> receipt of relief

Fig. 26,—Curve showing ' the number of Districts 'of England and Wales in

which the Pauperism on 1st January 1891 did not exceed any given per-

centage of the population (same ’data as Fig. 10, p. 92): graphical

determination of Deciles.

curve used for obtaining^the deciles by the graphical method in

the case of the distribution of pauperism (Example ii. above).

The figures of the original table are added up step by step from

the top, so as to give the total frequency not exceeding the upper

limit of each class-interval, and ordinates are then erected to a

horizontal base to represent on some scale these integrated

frequencies : a smooth curve is then drawn through the tops of

the ordinates so obtained. This curve, as will be seen from the

figure, rises slowly at first when the frequencies are small, then

more rapidly as they increase, and finally turns over again and

becomes quite flat as the frequencies tf£il off to zero. The deciles
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may be readily obtained from such a curve by dividing the

terminal ordinate into ten equal parts, and projecting the points

so obtained horizontally across to the curve and jbhen vertically

down to the base. The construction is indicated on the figure for

the fourth decile, the value of which is approximately 2*88 per cent.

29. The curve of fig. 26 may be drawn in a different way by
taking a horizontal base divided into ten or a hundred equal

parts (grades, as Sir Francis Galton has termed them), and erecting

at each point so obtained a vertical proportional to the cor-

responding percentile. This gives the curve of fig. 27, which was
obtained by merely redrafting fig. 26. The curve is of so-called

O 10 r20 30 40 50 GO 70 SO 00 WO

Orodes

Fig. 27.—-The curve of Fig. 26 redrawn so as to give the Pauperism
corresponding to each grade : Galton’s “ Ogive.”

ogive form. The ogive curve for the ^distribution of statures

(Example iii.) is shown for comparison in fig. 28. It will be noticed

that the ogive curve does not bring out the asymmetry of the

distribution of pauperism nearly so clearly as the frequency-

polygon, fig. 10, p. 92.

30. The method of percentiles has some advantages as a method
of representation, as the meaning of the various percentiles is so

simple and readily understood. An extension of the method to

the treatment of non-measurable characters has also become of

some importance. For example, the capacity of the different boys
in a class as regards some school subject cannot be directly

measured, but it may not be very difficult for the master to
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arrange them in order of merit as fegards this character : if the

boys are then “numbered up” in order, the number of each boy,

or his rank, serves as some sort of index to his capacity (cf. the

remarks in § I'l It should be noted that rank in this sense is

not quite the same as grade; if a boy is tenth, say, from the

bottom in a class of a hundred his grade is 9*5, but the method
is in principle the same with that of grades or percentiles).

The method of ranks, grades, or percentiles in such a case may
be a very serviceable auxiliary, though, of course, it is better if

possible to obtain a numerical measure. But if, in the case of a
measurable character, the percentiles are used not merely as

Stature corresponding to each, grade ,

for adult> males in, the British Isles.

Fig. 23.—Ogive Curve for Stature, same data as Fig. 6, p. 89.

constants illustrative of certain aspects of the frequency-distribu-

tion, but entirely to replace the table giving the frequency-

distribution, serious inconvenience may he caused, as the

application of other methods to the data is barred. Given the

table showing the frequency-distribution, the reader can calculate

not only the percentiles, but any form of average or measure of

dispersion that has yet been proposed, to a sufficiently high

degree of approximation. But given only the percentiles, or at

least so few of them as the nine deciles, he cannot pass back to

the frequency-distribution, and thence to other constants, with any

^degree of accuracy. In all cases of published work, therefore,

the figures of the frequency-distribution should be given
;
they

are absolutely fundamental. '

•
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1.

Verify the following froin the data of Table VI., Chap. VI., continuing
the work from tht? stage readied for Qu. 1, Chap. VII.

Stature in Inches for Adult Males born in-

England,
j

Scotland, i Wales,
j

Ireland.

,
Standard deviation .

Mean deviation

.

Quartile deviation

Mean deviation / standard

deviation

Quartile deviation/standard

deviation

Lower quartile .

Upper }5

2. (Continuing from Qu. 2, Chap. VII.) Find the standard deviation,

mean deviation, quartiles and quartile deviation (or semi-interquartile range)

for- the distribution of weights of adult males in the United Kingdom given in

the last column of Table IX., Chap. VI.
Compare the ratios of the mean and quartile deviations to the standard

deviation with the ratios stated in §§19 and 23 to be usual. ?>

Find the value of the skewness (equation 12), using the approximate value

of the inode.

3. Using, or extending if necessary, your diagram for Question 4, Chap. VII.

,

find the quartile values for houses assessed to inhabited house duty in 1885-6,

from the data of Table IV., Chap. VI.
Find also the 9th decile (the value exceeded by 10 per cent, of the houses

only).,,,

'

'

.

4. Verify equation (9) by direct calculation of the standard deviation of the

numbers 1 to 10.

5. (Data from Sauerbeck, Jour. My. Stat. Me., March 1909.) The
following are the index-numbers (percentages) of prices of 45 commodities in

1908 on"their average prices in the years 1867-77:—40, 43, 43, 46, 46, 46,

54, 56, 59, 62, 64, 64, 66, 66*67, 67, 68, 68, 69. 69, 69, 71, 75, 75, 76, 76,

73, 80, 82, 82, 82, 82, 82, 83, 84, 86, 88, 90, 90, 91, 91, 92, 95, 102, 127.

Find the mean and standard deviation (1) without further grouping
; (2)

grouping the numbers by lives (40-, 45~, 50-, etc.).; (3) grouping by tens (40-,

5Q-, 80-, etc.).

6. (Continuing from Qu. 8, Chap. VII.) Supposing the frequencies of

values 0, 1, 2, 3, . . . of a variable to be given by the terms of the binomial

series .

fl

, ....

where p+ q~l, find the standard deviation.

7. {Of. the remarks at the end of § 17.) The sum of the deviations (with-

out regard to sign) about the centre ofthe class-interval containing the mean



156 THEORY OF STATISTICS.

(or median), in a grouped frequency^distribution, is found to be S. Find the

correction to be applied to this sum, in order to reduce it to the mean (or

median) as origin, on the assumption that the observations are evenly dis-

tributed over each class-interval Take the number of observations below the

interval containing the mean (or median) to be ?i
l5

in that interval n2 ,
and

above it n3 ;
and the distance of the mean (or median) from the arbitrary

origin to be cl.

Show that the values of the mean deviation (from the mean and from the

median respectively) for Example ii.
,
found by the use of this formula, do not

differ from the values found by the simpler method of §§ 16 and 17 in the

second place of decimals.

S. (W. Scheibner, “ Ueber Mittelwerthe,” JBerichte der Jcgl. sachsischen

Gesellschafi d. JVisscnsckqften, 1873, p. 564, cited by Feehner, ref. 2 of

Chap. VII. : the second form of the relation is given by G. Duncker (Die

Method,e der VariationsstatistiJc
;
Leipzig, 1899) as an empirical one. ) Show

that if deviations are spiall compared with the mean, so that (x/Mf may be

neglected in comparison with x/M, we have approximately the relation

where G is the geometric mean, M the arithmetic mean, and o the standard
deviation : and consequently to the same degree of approximation M2 - G2=er2.

9. (Scheibner, loc. cit., Qu. 8.) Similarly, show that if deviations are small

comparecfwith the mean, we have approximately

B=A
(
i -£}

H being the harmonic mean.



CHAPTER IX.

CORRELATION.

1-3. The correlation table and its formation—4-5. Tjj.e correlation surface—
6-7. The general problem—8-9. The line of means of rows and the
line of means of columns : their relative positions in the case of

independence and of varying degrees of correlation—10-14. The
correlation coefficient, the regressions, and the standard-deviations of

arrays—15-16. Numerical calculations—17. Certain points to be
remembered in calculating and using the coefficient.

1. In chapters VI. -VIII. we considered the frequency-distribu-

tion of a single variable, and the more important constants

that may be calculated to describe certain characters of such

distributions. We have now to proceed to the case of two
variables, and the consideration of the relations between them.

2. If the corresponding values of two variables be noted

together, the methods of classification employed in the preceding

chapters may be applied to both, and a table of double entry or

contingency-table (Chap. V.) be formed, exhibiting the frequencies

of pairs of values lying within given class-intervals. Six such

tables are given below as illustrations for the following

variables:—Table I., two measurements on a shell (Pecten).

Table II., ages of husbands and wives in England and Wales in

1901. Table III., statures of fathers and their sons (British).

Table IV., fertility of mothers and their daughters (British

peerage). Table V., the*rate of discount and the ratio of reserves

to deposits in American banks. Table VI., the proportion of

male to total births, and the total numbers of births, in the

registration districts of England and Wales.

Each row in such a table gives the frequency-distribution of

the first variable for cases in which the second variable lies

within the limits stated on the left of the row. Similarly, every

column gives the frequency-distribution of the second variable

for cases in which the value of the first variable lies within the

limits stated at the head of the column. As 44 columns ” and
44 rows” are distinguished only by thb accidental circumstance

157
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of the one set running vertically and the other horizontally, and
the difference has no statistical significance, the word array

has been suggested as a convenient term to denote either a row
or a column. If the values of X in one array are associated

with values of Y between the limits Yn ~$ and Yn + 3, Yn may be

termed the type of the array. (Pearson, ref. 6.) The special

kind of contingency tables with which we are now concerned

are called correlation tables, to distinguish them from tables

based on unmeasured qualities and so forth.

8. Nothing need be added to what was said in Chapter VI. as

regards the choice of magnitude and. position of class-intervals.

When these have been fixed, the table is readily compiled by
taking a large sh$et ruled with rows and columns properly

headed in the same way as the final table and entering a dot,

stroke, or small cross in the corresponding compartment for each

pair of recorded observations. If facility of checking be of

great importance, each pair of recorded values may be entered

on a separate card and these dealt into little packs on a board

ruled in squares, or into a divided tray; each pack can then be

run through to see that no card has been mis-sorted. The
difficulty as to the intermediate observations—values of the

variables corresponding to divisions between class-intervals—-will

be met in the same way as before if the value of one variable

alone h€ intermediate, the unit of frequency being divided

between two adjacent compartments. If both values of the pair

be intermediates, the observation must be divided between four
adjacent compartments, and thus quarters as well as halves may
occur in the table, as, e.g., in Table III, In this case the statures

of fathers and sons were measured to the nearest quarter-

inch and subsequently grouped by 1-inch intervals: a pair in

which- the recorded stature of the father is 60*5 in. and that of

the son 62*5 in. is accordingly entered as 0*25 to each of the

four compartments under the columns 59*5-60*5, 60*5- 81*5, and
the rows 61*5-62*5, 62*5-63*5. Workers will generally form
their own methods for entering such fractional frequencies

during the process of compiling, but one convenient method is

to use a small x to denote a unit and a dot for a quarter; the

four, dots should be placed in the position of the four points

of the x and joined when complete. It is best to, choose the

limits of class-intervals, where possible, in such a way as to avoid

fractional frequencies.

4. The distribution of frequency for two variables may be
represented by a surface or solid in the same way as the frequency-

distribution of a single variable may be represented by a plane

figure. We may imagine the surface to be obtained by erecting
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at the centre of every compartment of the correlation-table a

vertical of length proportionate to the frequency in that com-
partment, and joining up the tops of the verticals. If the

compartments
-^ere made smaller and smaller while the class-

frequencies remained finite, the irregular figure so obtained would
approximate more and more closely towards a continuous curved

surface—a frequency-surface—corresponding to the frequency-

curves for single variables of Chapter VI. The volume of the

frequency-solid over any- area drawn on its base gives the

frequency of pairs of values falling within that area, just as the

area of the frequency-curve over any interval of the base-line gives

the frequency of observations within that interval. Models of

actual distributions may be constructed by drawing the frequency-

distributions for all arrays of the one variable, to the same scale,

on sheets of cardboard, and erecting the cards vertically on a

base-hoard at equal distances apart, or by marking out a base-

board in squares corresponding to the compartments of the

correlation-table, and erecting on each square a rod of wood of

height proportionate to the frequency. ' Such solid representations

of frequency-distributions for two variables are sometimes termed
stereograms.

5. It is impossible, however, to group the majority of

frequency-surfaces, in the same way as the frequency-curves,

under a few simple types : the forms are too varied. Thtfsimplest

ideal type is one in which every section of the surface is a sym-
metrical curve—the first type of Chap. VI. (fig. 5, p. 89). Like

the symmetrical distribution for the single variable, this is a very

rare form of distribution in economic statistics, but approximate
illustrations may be drawn from anthropometry. Fig. 29 shows
the ideal form of the surface, somewhat truncated, and fig,

30 the distribution of Table III., which approximates to the same
type,—the difference in steepness is, of course, merely a matter of

scale. The maximum frequency occurs in the centre of the

whole distribution, and the surface is symmetrical round the

vertical through the maximum, equal frequencies occurring at

equal distances from the mode on opposite sides. The next

simplest type of surface corresponds to the second type of

frequency-curve—the moderately asymmetrical. Most, if not all,

of the distributions of arrays are asymmetrical, and like the dis-

tribution of fig. 9, p. 92 : the surface is consequently asymmetrical,

and the maximum does not lie in the centre of the distribution.

This form is fairly common, and illustrations might be drawn
from a variety of sources—economics, meteorology, anthropometry,

”5tc. The data of Table IT. will serve as «an example. The total

distributions and the distributions of the majority of the arrays
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are asymmetrical, the skewness being positive for the rows at

the top of the table (the mode being lower than the mean), and
negative for the rows at the foot, the more central rows being

nearly symmetrical. The maximum frequency lies towards the

upper end of the table in the compartment under the row and
column headed “ 30 - ” The frequency falls off very rapidly

towards the lower ages, and slowly in the direction of old age.

Outside these two forms, it seems impossible to delimit empirically

any simple types. Tables Y. and VI. are given simply as illus-

trations of two very divergent forms. Fig. 31 gives a graphical

representation of the former by the method corresponding to the

histogram of Chapter YI., the frequency in each compartment
being represented by a square pillar. The distribution of

frequency is very characteristic, and quite different from that

of any of the Tables L, II., III., or IV.

6. It is clear that such tables may be treated by any of the

methods discussed in Chapter V., which are applicable to all

contingency-tables, however formed. The distribution may be

investigated in detail by such methods as those of § 4, or tested

for isotropy (§ 11), or the coefficient of contingency can be
calculated (§§ 5-8), In applying any of these methods, however,

it is desirable to use a coarser classification than is suited to the

methods to be presently discussed, and it is not necessary to

retain the constancy of the class-interval. The classification

should, on the contrary, he arranged simply with a view to avoiding

many scattered units or very small frequencies. A few examples
should he worked as exercises by the student (Question 3).

7. But the coefficient of contingency merely tells us whether,

and if so, how closely, the two variables are related, and much
more information than this can be obtained from the correlation-

table, seeing that the measures of Chapters VII. and VIJI. can be
applied to the arrays as well as to the total distributions. If the

two variables are independent, the distributions of all parallel

arrays are similar (Chap. V. § 13) ;
hence their averages and

dispersions, e.g. means and standard deviations, must be the same.

In general they are not the same, and the relation between the
mean or standard deviation of the array and its type requires

investigation. Of the two constants, the mean is, in general, the

more important, and our attention will for the present be con-

fined to it. The majority of the questions of practical statistics

relate solely to averages : the most important and fundamental
question is whether, on an average, high values of the one variable

show any tendency to be associated with high (or with low)

"'Values of the other. If possible, we also rlesire to know how great a
divergence of the one variable from its average value is associated
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with a unit divergence of the other, and to obtain some idea as to

the closeness with which this relation is usually fulfilled,

8, Suppose a diagram (fig. 32) to be drawn representing the

values of means of arrays. Let OJC, OF be the scales of the two

variables, ix. the scales at the head and side of the table, 01, 12,

etc., being successive class-intervals. Let Mj be the mean value

of X, and M0 the mean value of Y. If the two variables be

absolutely independent, the distributions of frequency in all

parallel arrays are similar (Chap. V. § 13), and the means of arrays

must lie on the vertical and horizontal lines M
2
M

9
the

small circles denoting means of rows and the small crosses means
of columns. (In any actual case, of course, the means would not

lie so regularly, hut, if the independence were almost complete,

would only fluctuate slightly to the one side and the other of the

two lines.)

The cases with which the experimentalist, ejj, the chemist or

physicist, has to deal, where the observations are all crowded
closely round a single line, lie at the opposite extreme from
independence. The entries fall into a few compartments only of

each array, and the means of rows and of columns lie approximately
on one and the same curve, like the line RR of fig. 33.

The ordinary cases of statistics are intermediate between these*
two extremes, the lines' ot means being neither at right angles as
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in fig. 32, nor coincident as in fig. 33, but standing at an acute

angle with one another as RE (means of rows) and GO (means of

columns) in figs. 36-8 . The complete problem of the statistician,

like that of the "physicist, isto find formulae or equations which

will suffice to describe approximately these curves.

9. In the general case this may be a difficult problem, but, in

the first place, it often suffices, as already pointed out, to know
merely whether on an average high values of the one variable

show any tendency to be associated with high or with low values

of the other, a purpose which will be served very fairly by fitting a

straight line
;
and further, in a large number of cases, it is found

either (1) that the means of arrays lie very approximately round

straight lines, or (2) tha!b they lie so irregularly (possibly owing
only to paucity of observations) that the real nature of the curve

is not clearly indicated, and a straight line will do almost as well

as any more elaborate curve. (Of. figs. 36-38.) In such cases

—and they are relatively more frequent than might be supposed

—the fitting of straight lines to the means of arrays determines

all the most important characters of the distribution. We might
fit such lines by a simple graphical method, plotting the points

representing means of arrays on a diagram like those of figures

46-38
,
and “ fitting lines to them, say, by means of a stretched

black thread shifted about till it appeared to rim as near as
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might be to all the points. - But such a method is hardly satis-

factory, more especially if the points are somewhat scattered ,
it

leaves too much room for guesswork, and different observers obtain

very different results. Some method is clearly required which

will enable the observer to determine equations to the two lines

for a given distribution, however irregularly the means may lie,

as simply and definitely as he can calculate the means and

standard deviations.

10. Consider the simplest case in which the means of rows lie

exactly on a straight line RE (fig. 34). Let Jf
2
be the mean

value of 7, and let RE cut 3fy, the horizontal through Jf
2,

in M.

Then it may be shown that the vertical through M must cut OX
in Mv the mean of X For, let the slope of BE. to the vertical,

*i*e. the tangent of the angle M^MR or ratio of Id to IM, be bv
and let deviations from My, Mx be denoted by x and y. Then for

any one row of type y in which the number of observations is n,

71.1$, and therefore for the whole table, since %(ny) = 0.

^(xj—b^ny) - 0. M
1
must therefore be the mean of X, and

31 may accordingly be termed the mean of the whole distribution."-

Knowing that RR passesthroughM
r
it remains only to determine
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. This may conveniently be donejn terms of the mean product
of all pairs of associated deviations % and ?/, i,e.

—

For any one row we have

Therefore for the whole table

S(ay) = b
x
%(ny*)

Similarly, if GG be the line on which lie the means of columns
and b

2
its slope to the horizontal, rs/sM,

These two equations (2) and (3) are usually written

slightly different form. Let

Or we may write the equations to EE and GG-

These equations may, of course, be expressed, if desired, in

terms of the absolute values of the variables X and Y instead of

the deviations x and y. %
11. The meaning of the above expressions when the means of

rows and columns do not lie exactly on straight lines is very
readily obtained. If the values of x and bvy be noted for all

pairs of associated deviations, we have for the sum of the

squares of the differences, giving b
x

its value from (5),
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This is necessarily greater than the value (7) ;
hence 2(&**- b

xyf
has the lowest possible 'value when bj is put equal to rajar
Further, for any one row in which the number of observations

is n, the deviation of the mean of the row from EE is d (fig. 35),

and the standard deviation is 2(# - b^y)2 = nsa
2
-f n.d

2
. There-

fore for the whole table,

2(x -bryf« %(mj) + ?,{nd2).

But the first of the two sums on the right is unaffected by the

slope or position of RE, hence, the left-hand side being a

minimum, the second sum on the right must be a minimum also.

That is to say, when b
x
is put equal to rajay,

the sum of the squares

of the distances of the row-means from BE, each multiplied by the

corresponding frequency, is the lowestpossible.

Similar theorems hold good, of course, with respect to the line

GO. If b
2
be given the value r -y

, S(a? - bryf is a minimum,
..

°o?

and also %{n.e2
) (fig. 35). Hence we may regard the equations (6)

as being, either (a) equations, for estimating each individual aT
from its associated y (and y from its associated x) in such a way
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as to make the sum of the square^ of the errors of estimate the

least possible * or (b) equations for estimating the mean of the x*$

associated with a given type of y (and the mean of the y
7

s associated

with a given type of x) in such a way as to make the sum of the

squares of the errors of estimate the least possible, when every

mean is counted once for each observation on which it is based.

36.—Correlation between Age of Husband and Age of Wife iri England
and Wales (Table II.): means of rows shown by circles and means of

columns by crosses : r= -f
#
0*91.

The lines represented by the two equations are thus, in a certain

natural sense, “ lines of best fit
77
to the two actual lines of means,

12. The constant r is of very great importance. It is evi-

dently a pure number, and its magnitude is unaffected by the

scales in which x and y are measured, for these scales will

affect the numerator and denominator of (4) to the same
extent. If the two variables are independent, r is zero, for b

x

^and b
2
are zero (ef. § 8). The sign is the sign of the mean

product p, and accordingly r is positive if large values of x
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are associated with large values of y, and conversely (as
.

in

Tables L-IV.), negative if small values of x are associated with

large values of y and conversely (as in Table V.). The numerical

value cannot exceed ± 1, for the sum of the series of squares

in equation (7) is then zero and the sum of a series of squares

cannot be negative. If r= ±1, it follows that all the observed

pairs of deviations are subject to the relation x/y—o-Jo-*: this

Father stature

...Fig, 37.—Correlation between Stature of Father and Stature of Son (Table

III.) : means of rows shown by circles andloaeans of columns by crosses :

r=+0*51.

would be the case if the circles and crosses in such a diagram as

fig. 33 all lay on one and the same straight line. From these

properties r is termed the coefficient of correlation, and the
expression (4), r ~plcrx<ry= $(ocy)/N.(rxcryi should be remembered.

It should be noted that, while r is zero if the variables are

independent, the converse is not necessarily true: the fact that
r is zero only implies that the means of rows and columns-
lie scattered round two Straight lines which do not exhibit
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any definite trend, to right or to left, upward or downward.
Two variables for which r is zero are, however, conveniently

spoken of as uncorrelated. Table VI. and tig. 39 will serve as an
illustration of a case in which the variables are almost uncor-

related but by no means independent, r being very small
(
- 0*014),

but the coefficient of contingency 0 (for grouping of qu. 3) 0*47.

Figs. 36, 37, 38 are drawn from the data of Tables II., Ill, and
IV., for which r has the values +0*91, + 0*51, and +0*21 respec-

tively, the correlation being positive in each case. The student

Number of Mother!? Children*.

Fig. 38.—Correlation between number of a Mother’s Children and number of

her Daughter’s Children (Table IV.): means of rows shown by circles

and means of columns by crosses r= +0*21.

should study such tables and diagrams closely, and endeavour to

accustom himself to estimating the value of r from the general

appearance of the table.

13. The two quantities

are termed the coefficients of regression, or simply the regressions

being the regression of x on y, or deviation in x corresponding

on the average to a unit change in the «type of y, and beiu|
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similarly the regression of y on x. Whilst the coeffit

correlation is always a pure number, the regressions a

pure numbers if the two variables have the sanie dimens

in Tables I.-IT. : their magnitudes depend on the ratio of <x
(

consequently on the units in which x and y are measured,

are both necessarily of the same sign (the sign of r), Sii

Proportion-ofMale births per 1000 l)irihs.

Fie. 39.—Correlation between Population of a jtegistration District and Pro-

portion of Male Births per thousand of all births (England and Wales,

1881-90, Table VI.) : means of rows shown by circles and means
of columns by crosses : r— - 0*014.

not greater than unity, one at least of the regressions must be
not greater than unity, but the other may be considerably greater

if the ratio crx/<Ty or <T
yferx be great. The name regression arose

from the term being first introduced in the ease of inheritance of

stature (Gallon, refs. 2, 3). In this case the two standard devia-

tions are very nearly equal, so that both bj and b0 are less tha>
unity, say (using the mor$ recent data of Table III.) 0*50 and 0*52.



-comm.

Bence the sons of fathers of deviation x from the mean of all fathers

have -ait average"deviatidn
:;

; -mean:

:

of all,'sgmji

;y<Atthewstepf&^ raeanfaBd^():'S3f

uiiiv he termed the “ratio .of regression.
5

'' In general, however,
.

tlir- Jdea of a ^ stepping back ” or “ regression ” towards & more
or less stationary mean is quite inapplicable1—obviously so where

i ie varial les re diheron t in kind, a? in Tables V. and VI.

—

and tho term “ coefficient of regression ” should be regarded simply

as a. convenient name for the coefficients h
x
and b

2
. RE and CG

art* generally termed the “lines of regression,” and equations (8)

the'“ regression equations.” ' The expressions. “ characteristic lines,
55

“ characteristic equations ” (Yule, ref, 8) would perhaps be better.

Where the actual pieans of arrays appear to be given, to a satis-

factory degree of approximation, by straight fines, we may say

that the regression is Umar . It is not safe, however, to assume

that such linearity extends^beyond the limits of observation..

14, The two standard deviations

Sx= OU is/. By**## V

are of considerable importance. It follows from (7) that sz is the

standard deviation of (x-~lvy\ and similarly y is the standard

deviation of (y - bvx), Hence we may regard sx and s
v

as the

iShdard: errors roo mean square errors) made m estimating is

\ remt y end y from «r by the respective characteristic relations

x^h-v y = h
2
;xm

y may also be regarded as- a kind of average standard deviation of

a row about RE, and .sy as an average standard deviation of a

column about GO, In an ideal case, whore the regression is

truly linear and tho standard deviations of all parallel arrays are

equal, a case to-which the : distribution of Table III. is a rough
approx i a ' m. y is rise standard deviation of the r array rnul y
the standard deviation ot the y-array (cf. Chap. X. 19 (3)).

lit ice y. and y ai son .cities termed the “standard deviations

of arrays.”',./ i
'

'

'

. ) v fd

/

yu'~

IH. Woceerlirjg now to the arithmetical workr *-fhe only new
expression that has to be calculated in order to determine r, b v d2 ,

y, and y is the product sum Efxp) or the moan product jk As in

the ruses of menus and standard deviations, thq fern of the
arithmetic is slightly dhTorenl: according as i!u olf^yations are

ihw and unuroup-.d, or sufficient to justify the formation of a

correlation-tuhle. In the first ;case, as in Example i. below, the
work A quitn stminhuorwanL _

T/yuj/rnWh, Table Vi!,-- The wwhd.hv mu ft) X- the estimated

12
’

•

§j pipItY)

g|j
' •

' As-pi" as

i

| pi
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Table TIL Theohy of Correlation: Example i

Products xy.

Estimated Percent-

Average age of

Warnings Popula-

/ of Agrl- tioa in

cultural receipt

Labourers- of

Shillings Poor-

and Pence law

per Week. Beliet.

Devia-
tion of

;

x from
!

Mean
(Pence).

Devia-
tion of

y from
'Mean.

Union.

73*00

v.WJS;
102*80
54*25

14*49

47*50

1*6120
1*9044

5*19S4
3*0625
0*47(31

6*2500
0*0144

0*4356

16884
0*79*21

0*8364
0*7921

.
1*1230
0*4356
0*4225

0*2809

5*6644

2*2201
1*1664

. 0*9409

0*3481

4*0401

2 *8900 -
;

0*0841

,
4*7089
0*9216

0*0676

0*7569
0*0625
4*8841

0*4761

(00324

,
0*0025

i 0*6561

4*0000

1-5376

0*4489

2*8104

1. Glendale . .

2. Wigton .

3. G-arstang .

4. Belper
5. Nantvvieli

6 . Atcharn .

7. Driffield . .

8„ Uttoxetcr
9. WefcTflrhy

10. ’Easingwold .

11- Southwell
12. Hollingbonrn .

13. Melton Mowbray
14. Truro
lfi. Godstone
16. Louth #

.

17. Brixworth
15. Crertiton .

19. Holbeauh .

30. Maidon .

21. Monmouth
22. St Neots .

23. SwaftTiam

21 ,
Thakeham

25. Thame '

.

26. Thingoe .

27. Basingstoke .

28. Cirencester

29. Korfch • Witchford

30. Pewsey .

31. Bromyard
32. Wantage .

33. Stratford on Avon
84. Dorchester . :

35. Woburn ’

;

30. Buntingfofti .

37. Per,shore .

38 . jQangport .

- 1*38'

- 2*28/

-1*75
-0*69
-2*50

+ 0-12

- 0-86

- 1*28

-0*89
-0*68
-0*89
-1*06 1

4-0*66
;

-0*65 :

40*58
-2*38
41*49
41*08
40*97
40*59
- 2*01

.41*70
- 0*20

42*17
40*96
40*26
40*87
-0*25
42*21
40*69
40*18
#0*25
40*S1
42*00

4) ‘24

40-67
41'52

23*87
10*50
2*80
9*57’'

30*94

0*06
2*52

4'0U
13*77

34*60

23*50

19*43 v

62*32

(398*17

3*2*18:
16,018

i

63*0556Mean
3*67

Mean
15 11
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179

average weekly' earnings of agricultural labourers in 38 English'

Poor-law anions of an agricultural* type (the data of Exai q h I,,

'' Chap. YIII. p. 137). (2) Y—the
.

percentage of the population
; In receipt of Boor-law relief .on • the • 1st January 1891

' in each of
,

the

same unions (B return).
.

The means of each . of the : variables •" are

calculated in the ordinary way, and then the deviations x and y
from the..mean are written' down (columns 4 and 5) : care,, must
be taken to give each deviation the correct sign. These deviations .

are then squared (columns 6 and 7) and the standard- deviations

found as before (Chap. YIII, p. 136). Finally, every x is

multiplied by the associated y and the product entered in column

8 or column 9 according to its sign. These columns are then

added up separately and the algebraic sum of the totals gives

%{xy) = -866*04: therefore the mean product j^ = 2(#y)/X===- -

17*53, and '

- .. ,

17*53
r--20T7T39-- 6®-

There is therefore a well-marked relation exhibited by these data

between the earnings of agricultural labourers in a district and

the percentage of the population in receipt of Poor-law relic!

A penny is rather a small unit in which to measure deviations in

the average earnings, so for the regressions we may alter the unit

of x to a shilling, making <rx
~ 1*71, and

V « - 0-87,' h= r— - - 0*50.
o*w “ m.

The regression equations are therefore, in terms of these units,

x— - 0*87?/
:

y- - 0*50r.

For practical purposes it is more convenient to express the

equations in terms of the absolute values of the variables rather

than the deviations : therefore, replacing x by (X- 15*94) and y
by (7 — 3*67) and simplifying, we have

• >' Jl* .

•if
'.'vH'i/

, i.f
'*

’t
'<

. j) Vf

/)* Oil V'-'uH; </•

•

. i

u S ,yfyU

i
\

X- 19*13 -0*87.7

7« 11*64 - 0*50X
<*>

<*>!

the units being Is. for the earnings and 1 per cent./ for the:

pauperism. The standard errors made in using these equations

to estimate earnings from pauperism and pauperism from earnings

respectively are

<rx 15*4d. •- 1 *28s.

**
cr
y J

l

~r2 = 0*97 per cent.

> k7 Y
I

a
|||

*

’ Afft> :

I «i.|

:

hk;
\,if ,

* • « a; *
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The equation (b) tells us therefore that a rise of 2s. in earnings

m passing from one district to another means on the average a:
'

- | j
%

fall of 1 iu the percentage in receipt of relief. A natural con-

Aihsioiir^woiild'' be thatVthis • ffieahs a /direct effect

ears hngs in diminishing tlie necessity for relief, but sm-h a

conclusion cannot be accepted offhand. Equation (a) indicates,

for instance, that every rise of a unit in the ponvulage \o

lieved corresponds to a fall of 0*87 shillings, or iOid. in earnings: d:

this might mean that the giving of relief tends to depress wages.

'Which is the correct interpretation of the facts I The above

Arcr>mj& a’e&tijy e<xr*7ting# of AgricvilJtur&A L abo timers.

HI |
Fig. 40.—Correlation between Pauperism and Average Earnings of*Agricultural

mC: Labourers for certain districts of England (data of Table YII.) : Jilt,

1 <7(7, lines of regression : r= - 0*66.

; t

-

regression equations alone cannot tell fis this, and it is in the
discussion of s ich questions that most of the difficulties of statists

_

cal arguments arise.

As a check on the whole of the arithmetical work, and to test

whether the correlation coefficient is. unduly affected by a few out-

Ijhigo nervations, or, perhaps, lu the regression not being line: r,

It is» always as well to draw a diagram representing the results

,
obtained. Take scales along two axes at right angles (fig. 40)

presenting the variables, and insert a dot (better, for clearness,
‘

mall circle or a cross) at the point determined by each observed*. w! f
r of x and y, Complete the diagram by inserting the two lines
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RR and GO gu m by the regression equa ions
( )

and (5). In

doing this it is as well to determine a point at each .end of both

lines, and theii to cheek the work by seeing that they meet in the

?mean of . the whole distribution. Thus RR is determined' from '{a)

'by the points’ T~0, JT- 19*13 and 7-6, Z- 13*91 :,00’

m

determined -from (b) by the points Z— 12, 7— 5*64 and X— 21,

7 — 1*14% - .'Marking in these points, and drawing ' the lines, they:

will be found to meet in the mean, X— 15*94, 7—3*67. The
diagram gives a very clear idea of the distribution

;
clearly the

regression is as nearly linear as may be with so very scattered a

distribution, and there are no very exceptional observations. The
most exceptional districts are Brixworth and St Neots with rather

low earnings but very low pauperism, and Ql'endalc and Wigton
with the highest earnings but a pauperism well above the lowest-
over 2 per cent.

16. When a classified correlation-table is to be dealt with, the

procedure is of precisely the same kind as was used in the calcula-

tion of a standard deviation, the same artifices being used to shorten

the work. That is to say, (1) the product-sum is calculated in the

first instance with respect to an arbitrary origin, and is afterwards

reduced to the value it would have with respect to the mean; f2)

the arbitrary origin is taken at the centre of a -class-interval
; (3)

the? class-interval is treated as the unit ofmeasurement throughout

the arithmetic. •

Let deviations from the arbitrary origin be denoted by 4*r/, and

let £rj be the co-ordinates of the mean. Then

+1 rj^y + rj,

«
•. £?« xy +h + V* 4 - ,

Therefore, summing, since the second and third suras on the
right vanish, being the sums of deviations from the mean,

jf;j,

ti- tOStm :RRR'. "R -t :

'yyRR RRgvVRRRRRRRRRRR
or bringing 2{4y) to the left,

That is, ..in terms of mean-products, using p
f

to denote the mean-
product for the arbitrary origin,

< t;;ylh' ;ahy
i

oasetwMere the : origin- from
;
whiebfdeviations

?

haye;yfee|m

^nneasu : }d is not the mean, this r: >rrccd m i uist be used. It will

sometimes give a sensible correction even for work in the form of
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Example i., and in that ease, 6z course, the standard donations
,

will also require reduction to the mean..

As the arithmetical process of calculating the correlation co-

efficient from a grouped table is of great importance, we give two

illustrations, the first economic, the second biological

:
• Example il, Table Till.—The two variables are (1) X, the

percentage of males over 65 years of age in receipt of Poor-law

•j
-

’
relief in 235 unions of a mainly rural character in England and

Wales
; (2) F, the ratio of the numbers of persons given relief “ out-

doors
J

’ (in their own homes) to one “indoors” (in the workhouse).
; F

1

,
The figures refer to. a one-day count (1st August 1890, No. 36,

1890), and the table is one of a series that were drawn up with'

the view to discussing the- influence of administrative methods on

I

^Mv tl pauperism, (Economic Journal, vol vi., 1896, p. 613.)

|
The arbitrary origin forX was taken at the centre of the fourth

column, or at 17*5 per cent.
;
for Y at the centre of the fourth,

row, or 3*5. The following are the values found for the constants

vF
‘ of the single distributions

p

•"

-0*77 per cent., whence Mx
^

16*73 per cent.
1

.
.

<r¥
— 1 *29 intervals ==6*45 per cent.

.

' _ ‘

.

t
.

;

' b™ -f 0*36 intervals or units, whence M
v = 3*86. b +

r" vV

cr
v = 3^*98 units,

,

7 V;

'

| \
To calculate S(^), the value of ip is first written in every

i compartment of the table against the corresponding frequency,

F v
treating the class-interval as the unit: these are the figures in

\ m heavy type in Table VIII. In making these entries the sign of

•

;
.1 the product may be neglected, but it must be remembered that

vy i this sign will be positive in the upper left-hand and lower right

I

hand quadrants, negative in the two others. The frequencies are

FT then collected as shown in columns 2 and 3 of Table VIIIa.,

being grouped according to the value and sign of ip. Thus for

2 ip^ b the total frequency in the positive quadrants is 13 + 8*5

;
.

« 21*5, in the negative 14 + 6-20 : for ip - 2, 10 + 4*5 + 1 + 4*5

•
.

'

20
^

in the positive quadrants, 5 + 2 + 1 + 3*5 = 11*5 in the

negative, and so on. When columns 2 and 3 ore completed, they

should first of mi be cheeked to sec that no frequency has hmm
drop kFi, which may be readily done by adding together the totals

‘ of these two columns together with the frequency in row 4 and
1 ! - 1 column 4 of 'Fable VIII. (the row and column for which ip = 0),

being careful not to count twice the frequency in the compart n ml
Ff

!
common to the two

; this grand total must clearly be equal to the

- |jh/ total number of observ atiooa A
r
or 235 in the present case. The

algebraic sum of the frequencies in each line of columns 2 and 3 is

*i ; ( +;
1

'

IF+VF

The following are the values found for the constants

iSM!
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Table VIII. Theory of Coreelation : Exampl<sii.—OJd-a<

Proportion of Out-relief. (The Frequencies are the liguic

, nary type, The numbers in heavy type are the Deviate

Number
j

Percentage of Males over 65 in receipt of Belief.

relieved
iGutdbbrS''' -tpe

P

1

to One n 5 ,~„10 iq-15. 15-20. 1 20-25.
j

25-30. 30-32

Indoors. '
1

!

Total,

Total- i‘'0 -'3‘0

Percentage in receipt of Belief

Out* re lief Katio

Mean 16*73 per cent. <rz CP45 per cents.

Mean 3*S0. ofS03.
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Table TIIIa. Calculation of the Pbootot Sum

Products,Frequencies.

Positive. Negative;
Quadrants.

|

Quadrants.

+ 16 “5

+ l*o

+ 0*5

+ 8*5

Totals • 100*5

41*5

93

then entered in column 4, treating the frequencies in coin '
if

.they' were themselves negative, and finally the figures of column 4

are multiplied by the values of 4-7/ and the products entered in

column 5 or 6 aeec rding to sign The algebraic sun- of fch total?

•of columns 5 and 6 ~ 4- 290 = %(£^), Whence ;/ = S(S/)/hT^ 1 *2;) h
To find the Table of ^ we have, remembering that we arc working
with cl 1SS' Intel vals as the 1 nit,

$7j •— — {
0 *

I 53 x 0 *86
}
~~ - 0*055

p -

p

- Id- 1 ‘234 + 0*055 «4 1 *289

•

,

1*289
} ' 4" +;.m a j o h 0 34,

f|>f‘The regression of pauperism on out-relief ratio is, reverting to*

1 per cent, as the unit of pauperism instead of the class -in iervafi
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4- f)%n x 6 io/24)f =0*7 1 an 1 the regie ssion equation accordingly

x = 0’74v/ or

X— 13-9 + 0*74r
?

7tKferstodarci'
:, ei:Torinadeviii umu|||the pquahionf dor estiiliating /A?:

from )'l*oin- <r.,- gi - r :, ~ G'07.

This is the equation
,
of greatest practical interest, telling us

that, as we pass from one district to another, a rise of 1 in the.

ratio of the numbers relieved in their own homes to the numbers,

yeiieved in the workhouse corresponds on an average to a rise of

0*74 in the percentage in receipt of relief. The result is such as

to create a presumption in,favour of the view- that the giving of

out relief tends to ii er ase the mm .bers relieved, and this car be

taken is a workir g hypothesis for further im estigation.

vy^The'iufudeht, should /work, out • the

and cheek both by calculating the means of the principal rows

and coruniKs and hawing a efagram like figs ML 37, and MM
Extr pir id., Table, IX.— ; LrrpubsRh J laru measurements hy

U. Yide.) The two vt da! R aio 1 1 ) X 1 he lenu'tii of a moth* r

frond of duckweed (Lemna minor)
;

'
(2) T, the length of the

ydhnghteinfrondX^ . was' ':measiired'.t; wheh\4thb:
1

daughter-frond separated from it, and the daughter-frond when'

kits- ''first /daughte'r-frondl -separated. ."Measures-:were ;lakeuv’ from!

camera drawings made with the Zeiss-AbbtS camera linear a low;

kpower,' the -.actual; magnification Being' 2.4 : ,1. 7- The|units- ofTengtht

in the tabulated measurements are millimetres on the drawings.

;> % The arbitrary origin for both X and X was taken at 105 mm'.

7:..The:Mlowmg :aye
:

;i|eS^Sei found forThe; constants' of 'theTiugle;:'

distributions :

—

ME 4T.^S 3: intervalsX
;gM$T , mm» ;"MXM] *7 mia.i^oU dt^ikiggv

j;

= 4*11 mm actual.

<rx= 2 *-$*2$ ir.ic-rvals= 17*0 imu. or drawings 0*707 mm. actual.

7j= “0*203 - „ = - I'-mm. J/2 ~ 103 ‘8 mm. on draw-lug,

<* = 4*32 mm. actual.

<fg~ 3*084 ,,
= mm. on Yawing™ 0*771 mm, actual.

f. The values of 'fa are, entered in every compartment' of the;

.table as before, and the frequencies then collected, according to

The magnitude and sign of £j- in columns 2’ and 3 of Table IX^r
The entries In these two columns are next checked by adding" to

,
the totals the frequency in the row and column for which fjy; is

.

Xero^ And. ^seeing, f that number'' of mbseryatiohh;

(266). . The numbers in coin inn 4, arc given hy deducting the
tries in column 3 from those in column 2. The totals so

1 hbdned ov mnltipn olo Mi (e< hu n-
j )*n M (1 e products entered
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Products,Frequencies

!
Quadrants;

j

Quadrants.

Totals

in column 5 or 6 according to sign. The algebraic sum of the;

totals of these two columns gives 2(f^)= + 1519*5. Dividing
' But §p: i 1*058 x 0*208 - -+0*215 ; .there-,

fore p - 5*712 - 0*215 - 5*497.

^ +^Sl4" +0 ‘

{i3 ’



(2)

Length

of

daughter-frond.

f

Theory of Statistics.'] Z face page l 86.

Table IX. Theory of Correlation: Illustration iii. Correlation between (1) length of mother-frond,

®

(2) length of
daughterfrond%

in Lenina minor. [Unpublished data
;
G. U. Yule,]. (The frequencies are the figures printed in ordinary

type. The numbers in heavy type are the deviation -products A

(1) Length of mother-frond (mm. of eameia dr .uving enlarged u . ^
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:
regression'; ;of ;dauglitei*-frond mi mother-frond is 0*69

value which will not he altered by altering the units : of measure-

ment for both mofher- and daughter-fronds, as such an alteration'

will • affect : both ' standard deviations equally). , Hence
;
"the

•'

' re-

;

gression equation giving • the average actual length (in millimetres)

of dalighter-fronds for mother-fronds, of actual length X is
'

7-1H8+ OfffiX

We again leave it to the student to work out the second

regression equation giving the average length of mother-fronds

for daughter-fronds of length 7, and to check the whole work

by a diagram showing the lines of regression and the means of

arrays for the central portion of the table. ^

17. The student should be careful to remember the following

points in working:—

(1) To give p' and Jrj their correct signs in finding, the true

mean deviation-product />.

(2) To express <rx and crv in terms of the class-interval as a

Unit, in the value of r~p/crx <r,m for these are the units in tf;rms

of which p has been Calculated.

(3) To use the proper units for the standard deviations (nob

class-intervals in general) in calculating the coefficients of

regression : in forming the regression equation in terms of the

absolute values of the variables, for example, as above, tke work
will be wrong unless means and standard deviations are ex

pressed in the same units.

Further, it must always be remembered that correlation

coefficients, like all other statistical measures, are subject to

fluctuations of sampling (cf, Chap. III. §§ 7, 8). If we write

on cards a series of pairs of strictly independent values of x and

;?/ and then work out the correlation coefficient for samples of,

say, 40 dr 50 cards taken at random, we are very unlikely ever

to find r = 0 absolutely, but will find a series of positive and

.

negative values centring ro$nd 0. No great stress can therefore,

be laid on small, or oven on moderately large, values of r as

indicating a true correlation if the numbers of observations be
'

; iFV3'6, a value .. of :r.&
.

merely a chance - result (though a very infrequent -one); if

,
i7=10G, '/* ±043 may similarly be a mere fluctuation t of

sampling, though again an infrequent one. If iT=900, a value

of r= ±0T might occur' as a fluctuation of sampling .of the same :

degree 'of infrequency. The student must therefore be careful in

interpreting his coefficients. (See Chap, XVII. § 15.)

finally, it should be borne in mind thaj any coefficient, e.g, the

coefficient of correlation or the coefficient of contingency, gives
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oi*1 v a \y.\vt of the iniovui^tion afforded by the origina da fca. or

the correlation table, , The correlation table itself, or the original

data if no correlation table has been compiled, should always be

given, unless considerations of space or of expense absolutely

preclude the adoption of such a course.
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EXERCISES :

-

1, find the comlatiom coefficient and the ‘equations of regression for the

• lollowing values of A and H .

X''

1

"2

3

4
' 5

Y.

" -2

5
• 3

8
,,'7-

. [As a matter of practice it. is never worthcalculating * e°^*°^?W***
for so few observations : the figures- are given solely as a short temple

•hsstfasKi
and (1) the estimated earnings of agricultural laborers, (-) tne

of the population in receipt of relief.

;X
2
3

4

5:

6

7

8

9

10

11
1*2

IS

6*40

;

4**04

7*90

3*31

7*85

0*45

10*00

4*43

4*78

4*73

6*66

1*22
4 ‘27

14 7*50
' -27

15 4*44 28

16 8*34 29

17 0*89 30

18 9*89 . '31

19 4*00 32

20 6*02 33.

21 .8*27 34

22 1*58 ,

' 35

23
'

18*04 38

24 1*98 i 37

25 9*28 38

28 8*72

2*97

5*38

3*24

7*61
5*87’

5*50

3*58

6*93
6*02

4*92
4*04'

10*56

3.

chapter,

Verify the following data for the under-mentioned tables of the preceding

to'^donktoflw'jueans of tows and columns and draw diagrams
showing

;

I.” II.
^

ill. IV. VI.

Mean of X .

Y .

55*3. nma
53*1 '

v.

40*8 years
42*8

67*70 ins.

i
68*66 „

' 5*90
' 4*33

509-2

14,500

Standard devia- \ 6*86 j,
12 7 „ 2’7;2; ;'j}

- 2*83 7*4(5

tion o£X . » j

18,100Standard devia- \ 5*77 „
1

13 1 j 5
2’7f> n 2*97

tion of F . • j
-0*014

- Coefficient ofcorre- "\
4-0*97 4- 0*91 -1-0-51 + 0*21

lat,i( n . • j iXAllXl

;

Coefficient of con- V4
'

1

'

4
'

:

|

t
0-47tingency (for the \

I

0*90
:

'

0*81 0-51 0*31
f

grouping stated
j

i

-

^below) . . j
i

'

- YiM-ipS !

liiili

'

,!‘ U

'
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h, .-nhmhliiig the coefficient of contingency (coefficient of wyn nmy
eotitiiM'imoy) use the following groupings, so as to avoid small scatteiui

quencies at the extremities of the tables and also excessive anthme ;ie .-

1

I. Prroup together (1) two top rows, (2) three bottom rows, ( u ) tiro ll -

columns (4) four last columns, leaving centre of table as.it stands.

II Regroup“y ton-year intervals <15-, 2y, 35-, etc.) for both husband and

wife, Minkins’ tlm last pjroup * 6a otgi. --- ,r

III Regroup bv 2-inch. intervals, 58*5-60*5, etc., for atlier *1 *

etc., for son. If a 3-inch grouping be used (58-5-6V5, ete., Ur both Lrthnr and

son) the coefficient of mean square contingency isO 46o. [Both results aud

• •
.
” +i2 ’

is «* R<ws >

°‘
vf^ortok', gronpltlup to 494-6 and all' over 521 '5 leaving central cols.

Rows si ,'gly up 20 : then 20-28, 26-4-1, 44-53, 66 upwards.

1

»'

| ,

'
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CHAPTER X.

• CORRELATION: ILLUSTRATIONS AND PRACTICAL
METHODS,

1. Necessity for careful choice of variables before proceeding to calculate r—
2-8, Illustration i. : Causation of pauperism—9-10. Illustration

ii.: Inheritance of fertility—11-18. Illustration iii.: The weather

and the crops—14. Correlation between the movements of two
variables :

—

(a) Non-periodic movements : Illustration iv. : Changes
in infantile and general mortality—15-17. (b

)

Quasi-periodic move-
ments ; Illustration v. : The marriage - rate and foreign Oracle-—

18. Elementary methods of dealing with cases of non-linear regression

—1 9, Certain
* rough methods of approximating to the correlation

coefficient—20-22, The correlation ratio.

1. The student—especially the student of economic statistics, t,o

whom this chapter is principally addressed-—should be*carefui to

note that the coefficient of correlation, like an average or a

measure of dispersion, only exhibits in a summary and compre-

hensible form one particular aspect of the facts on which it is

based, and the real difficulties arise in the interpretation of the

coefficient when obtained. The value of the coefficient may be

consistent with some given hypothesis, but it may be equally

consistent with others; and not only are care and judgment
essential for the discussion of such possible hypotheses, but also

a thorough knowledge of the facts in all other possible aspects.

Further, care should be exercised from the commencement in the,

selection of the variables between which the correlation shall be
determined. The variables should be defined in such a way as

to render the correlations as readily interpretable as possible,

- and, if several are to be dealt with, they should afford the answers
.to specific and definite questions. Unfortunately, the field of

choice is frequently very much limited, by deficiencies in the

available data and so forth, and consequently practical possibilities *

as well as ideal requirements have to be taken into account. No'
^general rules can be laid down, but the following are given as

illustrations of the sort of points that biive to be considered.

m
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;h Illustration i.—Tt is required to throw some lieiht on the

variations of pauperism irj the unions (unions of parishes) of

England. (Of -Yule, ref. T)
One cai 1c itthle YiiU hearing on a part of this question, yv/u

the influence of the giving of out-relief on the proportion of the'

aged in receipt of relief, was given in Chap. IX. (p. 183), The

question was treated by correlating the percentage of the aged

relieved in different districts with the ratio of numbers relieved

outdoors to the 'numbers in the workhouse. Is such a method

the best possible?

On the wh>!o. it would seem better to correlate Wne/es in

pauperism with changes in various possible factors. If we say

that a ' high rate of pauperism in some district is due to lax

administration,
. weT presumably mean that as administration

became lax, pauperism rose, or that if 'administration were more
strict, pauperism would decrease

;
if we say that the high pauper-

ism is due to the depressed condition of Industry, we mean that

when industry recovers, pauperism will fall. When we say, in

,
fact, that any one variable is a factor of pauperism, we mean
that changes in that variable are accompanied by changes in the

percentage of the population in receipt of relief, either in the

same or the reverse direction, It will be .better, therefore, to

deal with changes in pauperism and possible factors. The next

Question is wha fa ors to choose.

3. The possible factors may he grouped under three beads :

—

(a) Administration..—Changes in the method or strictness of

administration of the law.

(h) Environment ,—Changes in economic conditions (wages,

'

prices, employment), social conditions (rest I mtml or mdustri J

character of the district, density of population, nationality <8

population), or moral conditions (as illustrated, e,g t
,
by the statis-

tics of 'crime),:’
.

tiff
;

-

;

by vy-vY hg
: 'gyy :

. W
. y.y 1

'(c) Age Distribution.—the percentage of th pro In Mori ho ween
given age-limits iu receipt of relief increases very rapidly with old

age, the at trial figures given by one of tfie only two then existing

returns of the age of paupers being—2 percent, under ag 36

1 pc i cent >ver 16 but mder 65, 2( p r cent, over 65. rib turn

36, 1890.);'
^ ^

‘

It is practically impossible to rival with more than time • ih.uors.

one from ea-*h of the above groups, or four rarhYee *<h *

gether, inclu ling the paupi rism itself. What shall we take, then,

as representative' variables, and 'how 'shall we best measure'
“pauperism”?

4, l
J
uui>eritiri.-~The returns give (a) cost, Y) number* r nmecU

It seems better to deal with (b) (as in the illusti Won or Table
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VTIL, Chap. IX.), as numbers are "more important than cost from

the standpoint of the moral effect* of relief on the population.

The returns, however, generally include both lunatics and vagrants

in the totals of persons relieved
;
and as the. administrative methods

of dealing with these two classes differ entirely from the methods
applicable to ordinary pauperism, it seems better to alter the

official total by excluding them.. Returns are available giving

the numbers in receipt of relief on 1st January and 1st July;

there does not seem to. be any special reason for taking the one

return rather than the other, but the return for 1st January was

actually used. The percentage of the population in receipt of

reliefmn 1st January 1871, 1881, and 1891 (the three census

years), less lunatics and vagrants, was therefore tabulated for each

union. (The investigation was carried out in T898.)

5. Administration .—The most important point here, and one

that lends itself readily to statistical treatment, is the relative

proportion of indoor and outdoor relief (relief in the workhouse
and relief in the applicant’s home). The first question is,

again, shall we measure this proportion by cost or by numbers
The latter seems, as before, the simpler and more important ratio

for the present purpose, though some writers have preferred the

statement in terms of expenditure (e.g. Mr Charles Booth, Aged
Poor—Condition

,
1894). If wd 1 decide on the statement in terms

of numbers, we still have the choice of expressing the proportion (1)

as the ratio of numbers given out-relief to numbers in the work-

house, or (2) as the percentage of numbers given out-relief on
the total number relieved. The former method was chosen,

partly on the simple ground that it had already been used in an

earlier investigation, partly on the ground that the use of the

ratio separates the higher proportions of out-relief more clearly

from each other, and these differences seem to have significance.

Thus a union with a ratio of 15 outdoor paupers to one indoor

seems to be materially different from one with a ratio of, say, 10
to 1 ;

but if we take, instead of the ratios, the percentages of

outdoor to total paupers, tffe figures are 94 per cent, and 91 per
cent, respectively, which are so close that they will probably fall

into the same array. The ratio of numbers in receipt of outdoor
relief to the numbers in the workhouse, in every union, was
therefore tabulated for 1st January in the census years 1871, 1881,
1891.

6. Environment.—Thm is the most difficult factor of all to deal

with. In Mr Booth’s work the factors, tabulated were (!) persons,

per acre
; (2) percentage, of population living two or more to a

roQjn,«.e. “overcrowding”; (3) rateable value per head (Aged Poor—
Condition ). The data relating to overcrowding were. first collected

..

;
lo

, ,
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at the census of 1891, and
#
are not available for earlier years.

Some trial was made of rateable value per head, but with not

very satisfactory results. For any given year, and for a group of

unions of somewhat similar character, e.g. rural, the rateable value

per head appears to be highly (negatively) correlated with the

pauperism, but changes in the two are not very highly correlated :

probably the movements of assessments are sluggish and irregular,

especially in the case of falling assessments in rural unions, and

do not correspond at all accurately with the real changes in the

value of agricultural land. After some consideration, it was

decided to use a very simple index to the changing fortunes of a

district, viz. the movement of the population itself. If the

population of a district is increasing at a rate above the average,

this is prirnd facie evidence that its industries are prospering; if

the population is decreasing, or not increasing as fast as the

average, this strongly suggests that the industries are suffering

from a temporary lack of prosperity or permanent decay. The
population of every union was therefore tabulated for the censuses

of I §71, 1881, 1891.

7. Age Distribution*—As already stated, the figures that are

known clearly indicate a very rapid rise of the percentage relieved

after 85 years of age. The percentage of the population over 65

years of age was therefore worked out for every union and tabu-

lated frem the same three censuses. This is not, of course,

at all a complete index to the composition of the population as

affecting. the rate of pauperism, which is sensibly dependent on

the proportion of the two sexes, and the numbers of children as

well. As the percentage in receipt of relief was, however, 20 per

cent, for those over 65, and only 1-2 per cent, for those under that

age, it is evidently a most important index. (A more complete

method might have been used by correcting the observed rate of

pauperism to the basis of a standard population with given num-
bers of each age and sex. (Of. below, Chap. XL pp. 223-25.)

8. The changes in each of the four quantities that had been
tabulated for every union were then measured by working out the

ratios for the intercensal decades 1871-81 and 1881-91, taking
the value in the earlier year as 100 in each case. The percentage
ratios so obtained were taken as the four variables. Further, as

the conditions are and were very different for rural and for urban
unions, it seemed very desirable to separate the unions into groups
according to their character. But this cannot be done with any
exactness: the majority of unions are of a mixed character, con-
sisting, say, of a small; town with a considerable extent of the
surrounding country. It might seem best to base the classification

on returns of- occupations, e.g. the proportions of the population
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engaged in agriculture, but the statistics of occupations are not

given in the census for individual unions. Finally, it was decided

to use a classification by density of population, the grouping used

being—Eural, 0*3 person per acre or less : Mixed, more than
0*3 but not more than I person per acre : Urban, more than 1 person

per acre. The metropolitan -unions were also treated by them-

selves. The limit 0*3 for rural unions was suggested by
.

the
' density of those agricultural unions the conditions in which

were investigated by the Labour Commission (the unions of

Table YIL, Chap. IX.) : the average density of these was 0*25,

and 34 of the 38 were under 0*3. The lower limit of density for

urban unions— I per acre—was suggested by a grouping of Mr
Booth’s (group xiv.) : of course 1 person per acre is not a density

associated with an urban district in the ordinary sense of the

term, but a country district cannot reach this density unless it

include a small town or portion of a town, i.e. unless a large

proportion of its inhabitants live under urban conditions.

The method by which, the relations between four variables are

discussed is fully described in Chapter. XII. : at the present stage

it can only be stated that the discussion, is Based on the correlations

.. between all the possible (6) pairs., that can be formed from the four

variables. -

9. Illustration ii—The subject of investigation is the inheritance

of fertility in man. (Gf. Pearson and others, ref. 3.) Qne table,

. from the memoir cited, was given as an example in the last chapter

(Table IV.). '

^

" h;
.

*

Fertility in man (i.e. the number of children bom to a given, pair)

is very largely influenced' by the : age of husband and wife at

marriage (especially the Tatter), and
.

by the duration of marriage.

It is desired to find whether it is also influenced- by the heritable

constitution of the parents, i.e. whether, allowance being made for

the effect of. such disturbing causes as age. and duration of marriage,

.

fertility is itself a heritable character.

The effect of duration of marriage may be largely eliminated

.

’

• by excluding all marriages which have not lasted, say, 15 years

f
;

at ffast. .This will rather heavily reduce the. number of records

[, ,

- available, but will leave a sufficient number for discussion. It

I

would be desirable to eliminate the effect of Tate marriages in

the same way by excluding all. cases in which, say, husband was

|

over 30 years of age or wife over 25 (or even less) at the, time

j

’ of marriage.
.

But, unfortunately, this'- is impossible
;
the age of

j

the wife—the most important factor—is only exceptionally given
I in peerages, family histories, and similar works, from which the

.
.

data must 'be compiled.-." All marriages must therefore be
! . included, whatever the age of the parents at- marriage, and the
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effect of the varying age at marriage must be estimated

afterwards.
*

10. But the correlation between (1) number of children of a

woman and (2) number of children of her daughter will be further

affected according as we include in the record all her available

daughters or only one. Suppose, e.g^ the number of children in

the first generation is 5 (say the mother and her brothers and

sisters), and that she has three daughters with 0, 2, and 4

children respectively ; are we to enter all three pairs (5, 0),

(5, 2), (5, 4) in the correlation-table, or only one pair'? If the

latter, which pair? For theoretical simplicity the second process

is distinctly the best (though it still further limits the available

data). If it be adopted, some regular rule will have to be made
for the selection of Che daughter whose fertility shall be entered

in the table, so as to avoid bias : the first daughter married

for whom data are given, and who fulfils the conditions as to

duration of marriage, may, for instance, be taken in every case.

(For a much more detailed discussion of the problem, and the

allied problems regarding the inheritance of fertility in the horse,

the stfident is referred to the original.)

11. Illustration iii.—The subject for investigation is the

relation between the bulk of a crop (wheat and other cereals,

turnips and other root crops, hay, etc.), and the weather. (Gf.

Hooker, rgf. 7.)

Produce-statistics for the more important crops of Great

Britain have keen issued by the Board of Agriculture since

1885 : the figures are based on estimates of the yield furnished

by official local estimators all over the country. Estimates are

published for separate counties and for groups of counties

(divisions). But the climatic conditions vary so much oyer the

United Kingdom that it is better to deal with a smaller area,

more homogeneous from the meteorological standpoint. On the

other hand, the area should not be too small
;

it should be large

enough to present a representative variety of soil. The group
of eastern counties, consisting of Lincoln, Hunts, Cambridge,
Norfolk, Suffolk, Esses, Bedford, and Hertford, was selected as

fulfilling these conditions. The group includes the county with
the largest acreage of each of the ten

1

crops investigated, with
the single exception of permanent grass.

12. The produce of a crop is dependent on the weather of

a long preceding period, and it is naturally desired to find the
influence of the weather at all successive stages during this

period, and to determine, for each crop, which period of the
year is of most critical importance as regards weather. It must*
be remembered, however/ that the times of both sowing and
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harvest are themselves very largely dependent on the weather,

and consequently, on an average of many years, the limits of

the critical period will not be very well defined. If, therefore,

we correlate the produce of the crop (X) with the characteristics

of the weather (Y) during successive intervals of the year, it

will be as well not to make these intervals too short. It was
accordingly decided to take successive groups of 8 weeks, over-

lapping each other by 4 weeks, i.e. weeks 1-8, 5-12, etc.

Correlation coefficients were thus obtained at 4-weeks intervals,

but based on 8 weeks’ weather.

13, It remains to be decided what characteristics of the weather

are to be taken into account. The rainfall is clearly one factor

of great importance, temperature is another and these two will

afford quite enough labour for a first investigation. The weekly

rainfalls were averaged for eight stations within the area, and

the average taken as the first characteristic of the weather.

Temperatures were taken from the records of the same stations.

The average temperatures, however, do not give quite the sort

of information that is required : at temperatures below a certain

limit (about 42° Fahr.) there is very little growth, and the

growth increases in rapidity as the temperature rises above this

point (within limits). It was therefore decided to utilise the

figures for “ accumulated temperatures above 42° Fahr.,” i.e.

the total number of day-degrees above 42° during es&h of the

8-weekly periods, as the second characteristic of the weather •

these “accumulated temperatures,” moreover, show much larger

variations than mean temperatures.

The student should refer to the original for the full dis-

cussion as to data. The method of treating the correlations

between three variables, based on the three possible correlations

between them, is described in Chapter XII.

14. Problems of a somewhat special kind arise when dealing

with" the relations between simultaneous values of two variables

which have been observed during a considerable period of time,

for the more rapid movements will often exhibit a fairly close

consilience, while the slower changes show no similarity. The two
following examples will serve as illustrations of two methods which
are generally applicable to such cases.

Illustration iv.—Fig. 41 exhibits the movements of (1) the

infantile mortality (deaths of infants under 1 year of age per 1000
births in the same year)

; (2) the general mortality (deaths at all

ages per 1000 living) in England and Wales during the period
1838-1904'. A very cursory inspection of the figure shows that
tvhen the infantile mortality rose fropa one year to the next
the general mortality also rose, as a rule

;
and similarly, when the
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infantile mortality fell, the general mortality also fell.
^

-There

were, in fact, only five or six exceptions to this rale during the

wnole period under review. The correlation between the annual

values of the two mortalities would nevertheless not be very high,

as the general mortality has been falling more or less steadily since

1875 or thereabouts,, while the infantile mortality attained almost

a record value in 1899. During a long period of time the correla-

tion between annual values may, indeed, very well vanish, for the

two mortalities are affected by causes which are to a large extent

different in the two cases. To exhibit, therefore, the closeness of the

relation between infantile and general mortality, for such causes

as show marked changes between one year and the next, it will be

best to proceed by correlating the annual changes
, and not the annual

values. The work would be arranged in the following form (only

sufficient years being given to exhibit the principle of the process),

and the correlation worked out between the .figures of cols. 3 and 5.

1.

Yea$.

2.

Infantile
Mortality per
1000 Births.'

3,

Increase or
Decrease from
Year before.

4.

General
Mortality per

|

.1000 living.

5.

Increase or
Decrease from
Year before.

' 1838 159 —~ ...
";!

22-4
,

1839 151 .
•

. -S . 21*8 -0 6
1840 154 +3 22*9 +n
1841 145 -9 21*6 -1*3

1842 152 +7 21*7 +0*1
1843 * 150 -2 21*2 -0*5

For the period to which the diagram refers, viz. 1.838-1904, the

following constants were found by this method :

—

Infantile mortality, mean annual change - 0*21 '

standard deviation - 9*63
1 General mortality, mean annual change -0*09

standard deviation * 1*14

Coefficient of correlation + 0 *

77 .

This is a much higher correlation than would arise from the

mere fact that the deaths of infants ferm part of the general

mortality, and consequently there must be a high correlation

between the annual changes in the mortality of those who are over
and under 1 year of age. (Of. Exercises 7 and 8, Chap. XL)

This method, which appears to have been first used by Miss
Cave and by Mr Hooker independently in the papers cited in

refs. 4 and 6, has recently been generalised by “Student” and
the theory fully developed by O. Anderson (cf. refs. 13, 14, 15).

By taking the first differences the influence of the slower changes'
of the two variables with time may not be wholly eliminated,
but this elimination maj; be more completely effected by pro-
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ceeding to the second differences, i.e.hy working out the successive

differences of the differences in col. 3 and in col. 5 before corre-

Fig. 41.—Infantile and General Mortality in England and Wales, 1838-1904.

lating. It may even be desirable to proceed to third, fourth or

higher differences before correlating.

Fig. 42.—Marriage-rate and Foreign Trade, England and Wales, 1855-1904.

15. Illustration v.—The two curves of fig. 42 show (1) the

marriage-rate (persons married per 1000 of the population) for

England and Wales
; (2) the values of exports and imports per

head of the population of the United Kingdom for every year

from 1855 to 1904. Inspection of the diagram suggests a similar

relation to that of the last example, tile one variable showing a
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rise from one Year to the ngxt when the other rises, and a fall

when the other falls. The movement of both variables is, how-

ever, of a much more regular kind than that of mortality,

resembling a series of “ waves ” superposed on a steady general

trend, and it is the “ waves ” in the two variables—the short-period

movements, not the slower trends—which are so clearly related.

16. It is not difficult, moreover, to separate the short-period

oscillations, more or less approximately, from the slower movement.

Suppose the marriage-rate for each year replaced by the average

of an odd number of years of which it is the centre, the number
being as near as may be the same as the period of the “ waves J—
e.g< nine years. If these short-period averages were plotted on

the diagram instead of the rates of the individual years, we should

evidently obtain a smoother curve which would clearly exhibit

the trend and be practically free from the conspicuous waves.

The excess or defect /'bf,. each annual rate above or below the

trend, if plotted separately, would therefore give the “ waves ”

apart from the slower changes. The figures for foreign trade

may Jbe treated in the same way as the marriage-rate, and we
can accordingly work out the correlation between the waves or

rapid fluctuations, undisturbed by the movements of longer period,

however great they may be. The arithmetic may be carried out

in the form of the following table, and the correlation worked out

in the ordinary way between the figures of columns 4 and 7.

1.

Year.
Marriage-rate
(England
and Wales).

3.

Nine
Years’

Average.

4.

Differ-

ence.

5.

Exports Hh-Im-
ports, £’s per
head (U.K.).

6.

' 7
- Nine

;

.7" Years’ 7

Average.

7

Differ-

ence.

1855 16-2 9*36
1856 16*7 '.A> ~~ / 11*14 — "7 —
1857 16‘5 11*85 w -.A 7" -A
1S58 16-0 '77:-" :-~77 ;

.

'— 10*73 • A- 77- 7— "

1859 17*0 16*5 +0*5 7 11*72 12*15 • -0*43
1860 17-1 4-0*5 13*03 .V 12-94

.
-{-fruit

1861 16-3 16-7
,

-0 4 $'01 .
13*52 -0-51

186*2
.

j

16*1 16*8 -0*7 13*40 14*17
'

-0*77
1863 16 -S 16*9 -0*1 15*13 14*81 7 4-0*32
1864 17*2 :7:'7'7-A 7 - :.i :. ;A7\ 16*43
1865

|

17*5 7A7: A 77 .'/ 7 7A 7,; 16*37 7. .A
1866 1

17*5 7yA
:
'A 7 7A y

;;

17*72 7
:

-

:

:

';

-7 "7 ;A'

1867 16*5
7

—-A 16*47
;7
—

.. _ .

17. Fig. 43 is drawn from the figures of columns 4 and 7, and
shows very well how closely the oscillations of the marriage-rate
are related to those of trade. For the period 1861-95 the
correlation between the two oscillations (Hooker, ref. 5) is 0*8J.
The method may obviously be extended by correlating the devia-
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tion of .the marriage-rate in any one year with the deviation of

the exports and imports of the year before, or two years before,

instead of the same year
;

if a sufficient number of years be
taken, an estimate may be made, by interpolation, of the time-

difference that would make the correlation a maximum if it were
possible to obtain the figures for exports and imports for periods

other than calendar years. Thus Mr Hooker finds (ref. 5) that

on an average of the years 1861-95 the correlation would be a
maximum between the marriage-rate and the foreign trade of

about one-third of a year earlier. The method is an extremely

useful one, and is obviously applicable to any similar case. The

+ Imports per head) in England and Wales : the Curves show Deviations

from 9 -year means. Data of R. H. Hooker, Jour. Boy. Stat. Soc., 1901.

student should refer to the paper by Mr Hooker, cited. Reference

may also be made to ref. 10, in which several diagrams are given

similar to fig, 43, and the nature of the relationship between the

marriage-rate and such factors as trade, unemployment, etc., is

discussed, it being suggested that the relation is even more
complex than appears from the above. The same method of

separating the short-period oscillations was used at an earlier

date by Poynting in ref. 16, to which the student is referred

for a discussion of the method.
18. It was briefly mentioned in § 9 of the last chapter that

the treatment of cases when the regression was non-linear was,

in general, somewhat difficult. Such cases lie strictly outside

the scope of the present volume, but it may be pointed out

that if a relation between X and Y be suggested, either by
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theory or by. previous experience, it may be possible tp throw

that relation into the form

Y~A + B.<j>(X),

where A and B are the only unknown constants to be determined.

If a correlation-table be then drawn up between Y and <j>(X)

instead of Y and X, the regression will be approximately linear.

Thus in Table Y. of the last chapter, if X be the rate of

discount and Y the percentage of reserves on deposits, a

diagram of the curves of regression, or curves on which the

means of arrays lie, suggests that the relation between X and Y
is approximately of the form

* X(Y-B)~A,

A and B being constants
;
that is,

XY-A + BX.

Or, if we make XT a new variable, say X,

Z=A + BX.

Hence, if we draw up a new correlation-table between X and Z
the regression will probably be much more closely linear.

If the relation between the variables be of the form

we have

Y-ABX

log T-logX + X. log B
,

and hence the relation between log Y and X is linear. Similarly,

if the relation be of the form

we have
XnY^A

log T= log A - n. log X,

and so the relation between log Y and log X is linear By
means of such artifices for obtaining correlation-tables in

which the regression is linear, it may be possible to do a good
deal in difficult cases whilst using elementary methods only.

The advanced student should refer to ref. 17 for a different

method of treatment.

19. The only strict method of calculating the correlation

coefficient is that described in Chapter IX. from the formula
%{xy) .

T ^
Wlr~(r

i Approximations to this value may, however, te
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found in* various ways, for the most part dependent either (1)

on the formulae for the two regressions r™ and r~L
,
or (2) on

the formula for the standard deviations of the arrays crx Jl- r2

and <rv J1 ~ r2 . Such approximate methods are not recommended
for ordinary use, as they will lead to different results in different

’hands, but a few may be given here, as being occasionally useful

for estimating the value of the correlation in cases where the

data are not given in such a shape as to permit of the proper

calculation of the coefficient.

(1) The means of rows and columns are plotted on a diagram,

and lines fitted to the points by eye, say by shifting about

a stretched black thread until it seems to rum as near as may
be to all the points. If by b

2
be the slopes of these two lines

to the vertical and the horizontal respectively,
%

r= J-b^.by

Hence the value of r may be estimated from any such diagram
as figs. 36-40 in Chapter IX., in the absence of the original

table. Further, if a correlation-table be not grouped by
equal intervals, it may be difficult to calculate the product

sum, hut it may still be possible to plot approximately a diagram
of the two lines of regression, and so determine roughly the

value of r. Similarly, if only the means of two rows and
two columns, or of one row and one column in addition to the

means of the two variables,'' are known, it will still be possible

to estimate the slopes of EE and CG, and hence the correlation

coefficient.

(2) The means of one set of arrays only, -say the rows, are

calculated, and also the two standard-deviations <rx and <rr The
means are then plotted on a diagram, using the standard-deviation

of each variable as the unit of measurement, and a line' fitted by
eye. The slope of this line to the vertical is r. If the standard

deviations be not used as the units of measurement in plotting,

the slope of the line to the vertical is r <r.x/<rV) and hence r will be
obtained by dividing the slope by the ratio of the standard-

deviations.

This method, or some variation of it, is often useful as a

makeshift when the data are too incomplete to permit of the

proper calculation of the correlation, only one line of regression

and the ratio of the dispersions of the two variables being required :

the ratio of the qiiartile deviations, or other simple measures of

dispersion, will serve quite well for rough purposes in lieu of the

ratio of standard-deviations. As a special case, we may note that
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if the two dispersions are ^approximately the same, the*' slope of

RR to the vertical is r.

Plotting the medians of arrays on a diagram with the quartile

deviations as units, and measuring the slope of the line, was the

method of determining the correlation coefficient (“ Gal ton’s

function ”) used by Sir Francis Galfcon, to whom the introduction

of such a coefficient is due.
,

(Refs. 2—1- of Chap. IX. p. 188.)

(3) If $x be the standard-deviation of errors of estimate like

,r- bv y, we have from Chap. IX. §
11—

•

-r%
'
and hence

But if the dispersions of arrays do n$t differ largely, and the

regression is nearly linear, the value of sx may he estimated from

the average of the standard-deviations of a few rows, and r deter-

mined-^or rather estimated—accordingly. Thus in Table III.,

Chap. IX., the standard-deviations of the ten columns headed
62*5-63*5, 63*5-64*5, etc., are—

• 2*56 2 26
2*11 2*26

e 2*55 2*45

2*24 2*33

2*23

2*60 Mean 2*359

The standard-deviation of the stature of all sons is 2*75: hence

approximately

= 0*514.

This is the same as the value found 1yy the product-sum method
to the second decimal place. It would be better to take an
average by counting the square of each standard-deviation
once for each observation in the column (or “ weighting

JJ

it with the number of observations in the column), but in the
present case this would only lead to a very slightly different

result, viz. <r = 2*362, r = 0*512.

^

20. The Correlation Ratio .—The method clearly would not
give an approximation, to the correlation coefficient, however, in
the case of such tables as V. and VI. of Chap. IX., in which the
means of successive arrays do not lie closely round straight lines.
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In such, cases it would always tend to give a value for r markedly
higher than that given by the ptoduct-sum method. The
product-surn method gives in fact a value based on the standard-

deviation round the line of regression
;
the method used above

gives a value dependent on the standard-deviation round a line

which sweeps through all the means of arrays, and the second

standard-deviation is necessarily less than the first. We reach,

therefore, a generalised coefficient which measures the approach
towards a curvilinear line of regression of any form.

Let sax denote the standard-deviation of any array of X% and
let n, as before, be the number of observations in this array (Chap.

IX., § 11), and further let

<rJ = ^{n.sJ)IN . . . (1)

Then crax is an average of the standard-deviations of the arrays

obtained as suggested at the end. of the last section. Now let

c-,J = oy^l - 7^/) . . • (2)

or

w*=i-H • • ^(3>
0"
x

Then rjxy is termed by Professor Pearson a correlation-ratio (ref.

18). As there are clearly two correlation-ratios for any one table,

it should be distinguished as the correlation-ratio of X on 7; it

measures the approach of values of X associated witB given

values of 7 to a single-valued relationship of any form. The
calculation would be exceedingly laborious if we had. actually to

evaluate <raxi but this may be avoided and the work greatly

simplified by the following consideration. If Mx denote the mean
of all X% mx the mean of an array, then we have by the general

relation given in § 11 of Chap. VIII. (p. 142)

N<r? = %n(sj + [Mx
Or, using crmx to denote the standard-deviation of

'

' O’? = (Tax~ + <Tmx
2

. . . (4)

Hence, substituting in (3)

The correlation-ratio of X on Y is therefore determined when we
have found, in addition to the standard-deviation of X, the

standard-deviation of the means of its arrays.

21. The correlation-ratio of X on Y cannot be less than the

coKjelation-coefficient for X and Y, and yjx
2 - r2 is a measure of

the divergence of the regression of X om 7 from linearity. For
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if d denote, as in Chap. IX., the deviation of the mean of an

array of JPs from the line 5f regression, we have by the relation

of Chap. IX., § II, p. 172 .

0-;2(l ~ r2
)
= <Taf + cr/ . . - . (8)

Substituting for <ra from (2), that is,

o*/==cra,

2(^2 ~r2
)

- . . * * CO

But <rd is necessarily positive, and therefore r

qx>J
is not less than r.

The magnitude of crd and therefore of rf - r2 measures the

divergence of the actual line through the means of arrays from

the line of regression.

It should be noted that, owing to the fluctuations of sampling,

r and rj are almost certain to differ slightly, even though the

regression may be truly linear. The observed value of if - r2

must *be compared with the values that may arise owing to

fluctuations of sampling alone, before a definite significance can

be ascribed to it (c/. Pearson, ref. 19, Blakeman, ref. 22, and the

formulae cited therefrom on p. 352 below).

2^.. The following table illustrates the form of the arithmetic

for the calculation of the correlation-ratio of son’s stature on

father’s stature (Table III. of Chap. IX., p. 160). In the first

column is given the type of the array (stature of father)
;
in the

second,#the mean stature of sons for that array; in the third, the

difference of the mean of the array from the mean stature of all

sons. In the fourth column these differenced are squared, and in

the sixth they are multiplied by the frequency of the array, two

decimal places only having been retained as sufficient for the

present purpose. The sum- total of the last column divided by
the number of observations (1078) gives <rmy

2 = 2’058, or crmy = 1*43.

As the standard-deviation of the sons’ stature is 2*75 in. (cf.

Chap. IX., question 3), i]yx
~ 0'52. Before taking the differences

for the third column of such a table, it is as well to check the

means of the arrays by recalculating from them the mean of the

whole distribution, i.e. multiplying each array-mean by its fre-

quency, summing, and dividing by the number of observations.

The form of the arithmetic may be varied, if desired, by working
from zero as origin, instead of taking differences from the true

mean. The square of the mean must then he subtracted from
2(/-WW t0 give

If the second correlation-ratio for this table he worked out in

the same way, the value will be found to be the same to the
second place of decimals : the two correlation-ratios for this table

are, therefore, very nearly identical, and only slightly greater
than the correlation-coefficient (0*51). Both regressions, it
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follows* from the last section, are very nearly linear, a result

confirmed by the diagram of the regression lines (fig. 37, p. 174).

On the other hand, it is evident from fig. 39, p. 176, that we
should expect the two correlation-ratios for Table VI. of the same
chapter to differ considerably from each other and from the correla-

tion. The values found are ^ = 0T4, yyx= 0*38 (r~ - 0-014) :

7}xy is comparatively low as proportions of male births differ little

in the successive arrays, but rjyx is higher since the line of regres-

sion of Y on X is sharply curved. For Table VIII., p. 183, the

two ratios are rfxtJ = 0j46, riyx— 0*39 (r= 0*34). The confirmation

of these values is left to the student.

The student should notice that the correlation-ratio only

affords a satisfactory test when the number of observations is

sufficiently large for a grouped correlation table to be formed.

In the case of a short series of observations such as that given in

Table VII., p. 178, the method is inapplicable. *

Calculation of the Correlation-Ratio: Example.—Son's Stature on
Father's Stature: Data of Table III., Chap. IX., p. 160.

1 .

Type of

Array
(Father’s

Stature).

2.

Mean of

Array
(Son’s

•

Stature).

3.

Difference

from Mean
of all Sons
(68*66).

4.

Square of

Difference.

.. 5. :

Frequency.

6.

Frequency x
(difference)2.

*

59 64*67 -3*99 15*9201 3 47-76

60 65*64 -3*02 9*1204 3*5 31*92

61 66*34 -2*32 5*3824 8 43*06

62 65*56 -3*10 9*6100 17 163*37

63 66*68 - 1*98 3*9204 33*5 131*33

64 66*74 - 1*92 3*6864 61*5 226*71

65 67*19 -1*47 2*1609 95*5 206*37

66 67*61 -1*05 1*1025 142 156*56

67 67*95 - 0*71 0*5041 137*5 69*31

68 69*07 4-0*41
1

0*1681 154 25*89

69 69*39 4-0»*73 0*5329 141*5 75*41

70 69*74 4*1*08 1*1664 116 135*30

71 70*50 4-1*84 3*3856 78 264*08

72 70*87 • 4* 2/21 4*8841 49 239*32

73 72*00 4-3*34 11*1556 28*5 317 *-93

74 71*50 4-2*84 8*0656 4 32*26

75 71*73 4*3*0/ 9*4249 5*5 51*84

Total

.

1078 • 2*218*42
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of Points in any number of Dimensions/’ Phil. Mag,, 6th Series, vol.

£xi,, 1911, p. 367.
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CHAPTER XI.

MISCELLANEOUS THEOREMS INVOLVING THE USE

the CORRELATION-COEFFICIENT.

Introductory—2. Standard-deviation 01 « an
=t»ndard- .

toence of
obsfrllon 0^the correlation-

*
of an index-9 Correlation between “f^MScent
coefficient for a two* x two-fold table—1L uotbjW

"

d
fnrfi.ll nossible pairs of JV values of a variable—*12. Co^Iauon au

to "heterogeneity °f material—13. Reduction
°^ ^rea

^7
U
Tj1(

,

minfflinff of micorrelated with correlated material— 14 it. i

Righted mean—18-1& Application of weighting to e -

fT death-rates etc., for varying sex and age-distiibutions x), i.

weighting of forms of average other than the arithmetic mean.

1. It has already been pointed out that a statistical measure, if

it is to be widely useful, should lend itself readily to algebraical

treatment. The arithmetic mean and the standard-deviation

derive their importance largely from the fact that they fulfil this

requirement better -than any other averages or measures of dis-

persion': and the following illustrations, while giving a number o

results that are of value in one branch or another of statistical

1

work suffice to show that the correlation-coefficient can be treated,

with’ the same facility. This might indeed be expected seeing

that the coefficient is derived, like the mean and standard-devia-

tion, by a straightforward process of summation.

% To find the Standard-deviation of the sum or difference Z of

corresponding values of two variables X\ and -'To*

Let 2
,

ffj, a\
2
denote deviations of the several variables from

their arithmetic means. Then if

:
''' Z --.X.-x ±.X<u
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1

Squaring both sides of the equation and summing.

That is, if r be the correlation between x
x
and x^ and cr, crv c

r

2

the respective standard-deviations,

q
a*2 = oq2 + erf ± 2r.<x

1
cr
2 . « . (1)

If x
x
and x

2
are uncorrelated, we have the important special case

0‘2 = cr
1

2 + cr
2
2

. . . (2)

The student should notice that in this case the standard-

deviation of the sum of corresponding values of the two variables

is the same as the standard-deviation of their difference.

The same process will evidently give the standard-deviation of a

linear function of any number of variables.
,
For. the stym of a

series of variables Xv X2 . . . . Xn we must have

<r
2 = cr

1

2 + oy! + .... +<T, 2 '+2r
l2

.cr
1
cr

!j
+ 2r

13
.(r

1
o-
3

+ . . .. . + 2r
23

.(7.yr
3
4- . .

?\ 2
being the correlation beween X

l
and X

2 ,
r
23

the correlation

between X2
and X3,

and so on.

3. Influence of Errors of Observation on the Standard-deviation .

—The results of § 2 may be applied to the theory of Errors of

observation. Let us suppose that, ii any value of X be observed
a large number of times, the arithmetic mean of the observations

is approximately the true value, the arithmetic mean error being

zero. Then, the arithmetic mean error being zero for all values

of X,
the error, say 8

}
is uncorrelated with X. In this case if x

}
be

an observed deviation from the arithmetic mean, x the true, devia-

tion, we have from the preceding
-

<V
! = oy2 + crs

2
• • • (3)

The effect of errors of obs-fcvation is, consequently, to increase the

standard-deviation above its true value. The student should

notice that the assumption made does not imply the complete in-

dependence of X and 8: he is quite at liberty to suppose that

errors fluctuate more, for example, with large than with small

values of X, as might very probably happen. In that case the

contingency-coefficient between X and 8 would not be zero,

although the correlation-coefficient might still vanish as supposed.

4. Influence of Grouping on the Standard-deviation.—The
consequence of grouping observations to form the frequency

distribution is to introduce errors that %are, in effect, errors of
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measurement. Instead of assigning to any observation, its true

value X
,
we assign to it the value X

t
corresponding to the centie

of the class-interval, thereby making an error 8, where

X^X+S.
To deduce from this equation a formula showing the nature of

the influence of grouping on the standard-deviation we must know

the correlation between the error 8 and X or Xv If the original

distribution were a histogram, X
1
and 8 would be uncorrelated,

the mean value of 8 being zero for every value of X1
: further, the

standard-deviation of 8 would be c2/12, where c is the class-

interval (Chap. YIII. § 12, eqn. (10)). Hence, if (r
}
be the

standard-deviation of the grouped values X
x
and or the standard-

deviation of the trife values X "

2^=s rr%<r/-+
12

'

But the true frequency distribution is rarely or never a

histogram, and trial on any frequency distribution approximating

to tbs symmetrical or slightly asymmetrical forms of fig. 5, p. 89,

or fig, 9 (a), p. 92, shows that grouping tends to increase rather

than reduce the standard-deviation. If we assume, as in § 3, that

the correlation between 8 and X, instead of 8 and X15
is appreciably

zero and that the standard-deviation of 8 may be taken as c2/12,

as befor# (the values of 8 being to a first approximation uniformly

distributed over the class-interval when all the intervals are

considered together), then we have
> /*2<rW-n .... (4)

This is a formula of correction for grouping (Sheppard's correc-

tion, refs. 1 to 4) that is very frequently used, and that trial

(ref. 1) shows to give very good results for a curve approximating
closely to the form of fig. 5, p. 89. The strict proof of the

formula lies outside the scope of an elementary work : it is based
on two assumptions: (1) that the distribution of frequency is

continuous, (2) that the frequency tapers off’ gradually to zero

in both directions. The formula would not give accurate results

in the case of such a distribution as that of fig. 9 (l>), p. 92, or

fig, 14, p. 97, neither is it applicable at all to the more divergent
forms such as those of figs, 15, et seq.

5, If certain observations be repeated so that we have in every
case two measures % and #

2
of the same deviation oc, it is possible

to obtain the true standard-deviation crx if the further assumption
is legitimate that the errors S

1
and 82 are uncorrelated with each

other. Cm this assumption
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and accordingly

^(xi
x
i) = S(« + 8j)(iB + S

2)

"W -

F '

* • (5)

(This formula is part of Spearman’s formula for the correction of

the correlation-coefficient, cf.§ 7.) . \

6. Influence of Errors of Observation on the Correlation-coefficient.

—Let xv yx
be the observed deviations from the arithmetic means,

'X, y the true deviations, and 8, e the errors of observation. Of
the four quantities .r, ~y, 8, € we will suppose x and y alone to *

be correlated. On this assumption ...

It follows at once that

~~ 2(#y) (6 )

:

and consequently the observed correlation is less than the true

correlation. This difference, it should be noticed, no mere increase

in the number- of observations can in any way lessen.

7. Spearman7

s Theorems.—If, however, the observations of both

x and y be repeated, as assumed in’ § 5, so that we laave two
measures x

x
and yx

and y2
of every value of x and y, the true

value of the correlation can be obtained by the use of equations

(5) and (6), on assumptions similar to those made above. For
we have

„ 8 . . _ Sfci

y

a)S(^i) •

m S(»
t
*
3)S{yxy2)

-J
r
x\V\'

rawt _ r
xiV'f

rxm
"

/>j\

Or, if we use all the four possible correlations between observed

values of x and observed values of y,

_
rzith'

rx?wr$in'r*iVi

(
r
*i»r

r
tnvi)

. (
8)

* Equation (8) is the original form in which Spearman gave his

correction formula (refs. 6, 7). It will be seen to imply the

assumption that, of the six quantities x, y, Sv S2,
ev c

2 ,
x and y

&xone are correlated.
.

The correction given by the second part

of equation (7), also suggested by Spearman, seems, on the
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whole, to he safer, for it eliminates the assumption that th^ errors

in a? and in y, in the same series of observations, are nneorrelated.

An insufficient though partial test of the correctness of the

assumptions may he made by correlating'^ with y1
-y

2
:: -this

correlation should vanish. Evidently, however, it may vanish

from symmetry without thereby implying that all the correlations

of the errors are zero.

8. Mean and Standard-deviation of an Index.—(Ref. 11.) The
means and standard-deviations of non-linear functions of two or

more variables can in general only be expressed in terms of the

means and standard-deviations of the original variables to a first

approximation, on the assumption that deviations are small
’ compared with the mean values of the variables. Thus let it be

required to find tlie mean and standard-deviation of a ratio or

index Z—X-
x
/X

2,
in terms of the constants for X

l
and X>. Let /

be the mean of Z
:

and M
2
the means of Xr and X2

. Then

Mim1 71T-S \= + £i.Y
i + V)-

u

) N M*\ L +MJ\ M.J

Expand the second bracket by the binomial theorem, assuming
that ffg/Jfg is so small that powers higher than the second can
be neglected. Then to this approximation

X J/,j
N +-

That is, if r be the correlation between xt and a?
2,
and if

(9)

If s be the standard-deviation of Z we have

tXis'

4
-

1 M*_
"AT

Expanding the second bracket again by the binomial theorem,
and neglecting terms of ail orders above the second,
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or froi# (9)

(10)

9. Correlation between Indices.—(Ref. 11.) The following prob-

lem affords a further illustration of the use of the same method.

Required to- find approximately the correlation between two ratios

i^ — Xj/Xg, Z
2 = Xg/Xg, X

x
X

2
and X

3
being uncorrelated.

Let the means of the two ratios or indices be I
I /2

and the

standard-deviations s
1

s
2 ;

these are given approximately by (9)

and (10) of the last section. The required correlation p will be

given by

_/i)S /s)

X,

%
XX
*8*

Mi A1 + ?L
X1+2X1 +

j/,)

Neglecting terms of higher order than the second as before and
remembering that all correlations are sserdj we have

Psv\ z

“
i¥

?>

2 3 >

^4

where, in the last step, a term of the order i)fi has again been
neglected. Substituting from (10) for s

x
and s

2,
we have finally

—

J(vfi+ + v
3
2
)

.
(
11 )

This value of p is obviously positive, being equal to 0*5 if

v
2
— v^; and hence even if X

2
and X

2
are independent, the in-

dices formed by taking their ratios to a common denominatorX8
will

be correlated. The value of p is termed by Professor Pearson the

“spurious correlation.” Thus if measurements be taken, say, on

three bones of the human skeleton, and the measurements grouped

in threes absolutely at random, there will, nevertheless, be a

positive correlation, probably approaching 0*5, between the indices

formed by the ratios of two of the measurements to the third. To
give another illustration, if two individuals both observe the same
series of mug nit? ides quite independently, there may be little, if
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any, correlation "between their absolute errors. But if thet errors

be expressed as percentage^ of the magnitude observed, there

may be considerable correlation. It does not follow of necessity

that the correlations between indices or ratios are misleading.

If the indices are uncorrelated, there will be a similar “spurious”

correlation between the absolute measurements ZvXz
-X

l
and

Z
2
,X

S
X,, and the answer to the question whether the correlation

between indices or that between absolute measures is misleading

depends on the further question whether the indices or the

absolute measures are the quantities directly determined by the

causes under investigation (cf. ref. 13).

The case considered, where X
l
X

2
X3

are uncorrelated, is only

a special one
; for the general discussion cf. ref. 11 . For an in-

teresting study of Actual illustrations cf. ref. 14 .

> 10. The Correlation-coefficient for a, two- x twofold Table,—The
correlatjon-coeffiofent is in general .only calculated for a table with
a considerable number of rows arid columns, such as those given

in Chapter IX. In some cases, however, a theoretical value is

obtainable for the coefficient, which holds good even for the limiting

case Mien there are only two values possible for each variable (e.g.

0 and 1 )
and consequently two rows and two columns (cf. one illus-

tration in §11 ,
and for others the references given in questions 1

1

and 12). It is therefore of some interest to obtain an expression
for the coefficient in this cage in terms of the class-frequencies.

Using the notation of Chapters I.-IV. the table may be written

in the form

Values of

Second
Variable.

Values of First Variable.

X, r, Total

x2 (AB)\ UB) (-B)

x'

2 }(m .

'

(«J8) (.8)

Total u) to* |, N"

Taking the centre of the table as arbitrary origin and the
class-interval, as usual, as the unit, the co-ordinates of the
mean are
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The standard-deviations rrv cr„ are given by

" o-j'
2 = 025 ~ £

2 = (A)(ci)/iT2

Finally,

Writing

o-
2
2 = 0-25-ij2 = (j5)(/3)/W2-.

%y) =M(^) + (a/3) - (1/3) - (ai?)} - m.

(as in Chap. III.

this reduces to

Whence

(AB)-(A)(B)/F=8

11—12) and replacing rj by their values,

2(,ry) = S.

20 -

J(A)(a)(B)(Py
(
12)'

This value of r can be used as a coefficient of association, but,

unlike the association-coefficient of Chap* III. § 13, which is

unity if either (AB) = (A) or (AB) ~ (B)> r only becomes unity if

(AB) ~ (A) - (B). This is the only case in which both frequencies

(aB) and (A. ft) can vanish so that ,(A B) and (aft) correspond to

the frequencies of two points X
l
rv .

X
2
Y

q
on a line. Obviously

this alone renders the numerical values of the two coefficients

quite incomparable with each other. But further, while the

association coefficient is the same for all tables derived from one

another by multiplying rows or columns by arbitrary coefficients,

the correlation coefficient (12) is greatest when (A

)

= (a) and
(B) = (/?), he. when the table is symmetrical, and its value is

lowered when the symmetrical table is rendered asymmetrical by
increasing or reducing the number of A 9

&. or jTs. For moderate
degrees of association, the association coefficient gives much the

larger values. The two coefficients possess, in fact, essentially

different properties, and are* different measures of association in

the same sense that the’' geometric and arithmetic means are

different forms of average, or the interquartile range and the

standard-deviation different measures of dispersion.

The student is again referred to ref. 3 of Chap. III. for a
general discussion of various measures of association, including

these and others, that have been proposed.

11. The Correlation-coefficient for all possible pairs of X values

..of a Variable.—In certain cases a correlation-table is formed by
combining X observations in pairs in all possible ways. If, for

example, a table is being formed to illustrate, say, the correlation

betweem brothers for stature
,
and there are three brothers in
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one family with statures 5 ft. 9, 5 ft. 10, and 5 ft. 1 1, thpse are

regarded as giving the six pairs

5 ft. 9 with 5 ft. 10

» »
'

*5 ft. 11

5 ft. 10 „ - „

5 ft. 10 with 5 ft. 9

5 ft. 11 „ 55

5 ^ 10

which may be entered into the table. The entire table will be

formed from the aggregate of such subsidiary tables, each due to

one family. Let .it be required to find the correlation-coefficient,

,
however, for a single subsidiary table, due to a family with F
members, the numbers of pairs being therefore F(F - 1).

As each observed value of the variable occurs #-1 times,

i.e. once in combination with every other value, the means and

standard-deviations of the totals of the correlation-table are the

same as for the original F observations, say M and or, If x
t
x
3

x
z . be the observed deviations, the product sum may be

written

AV:

'2 +% + x
\
x
\ + - * * v

* +^ +^3 +%+ • ‘ •' »

'

4- -f x
z
x.
2 + a?

3
#4 4* .....

+

*«i{2(®) - + **{?(*) - .*2 } +X{2(«) - ®
8 } +

' iCft" Xn
,

- Fcr\

whence, there being F(F

-

1) pairs,

Fcr2
’

'

F(F~ 1
)
0*2 ~ F- 1

* (13)

For F~ 2, 3, 4 . . . . this gives the successive values of r— - 1,

^ clear that the first value is right, for two
values xv x

3
only determine the two points x

3)
and (x2i aq),

an d the slope of the line joining them is negative.

q^he student should notice that $ corresponding negative

assocu 'di°n will arise between the first and second member of the

pair if aJ* possible pairs are formed in a -mixture of A’s and ,a’s.

Looking art the association, in fact, from the standpoint of § 10,

the equation1

-. (13) still holds, even if the variables can only assume

two values, e.g. 9 and 1. This result Is utilised in § 14 of Chapter

XIV.
12. Correlation 'due to Heterogeneity of Material,—The following

theorem offers some ^analogy with the theorem of Chap, IV.

§ 6 for attributes .—Jj F and J are uncorrelated in each of i%%o

records,
they will nen^tkeless exhibit some correlation token, the-
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two . records are mingled
,

unless the mean value of X in the

second record is identical with that in •the first record
,
or the mean

value of Y in the second record, is identical with that in the first

record\ or both. -

This 'follows almost at once, for if Mv Jf
2
are the mean values of

X in the two records Kv IC
2 ,

the mean values of Y, Nv X., the

numbers of observations, and if, K the means when the two
records are mingled, the product-sum of deviations about if, K is

(Jf - M)(iq~ Ji) 4- XfJf - 3f)(X - K).

Evident!}? the first term can only be zero if M=M
l
or K—Ky

But the first condition gives ' \

that is, Mi

'

Similarly, the second condition gives K
l
—X2 , Both tile first

and second terms can, therefore, only vanish if M
l
«M2

or

— Ju. Correlation may accordingly he created by the mingling

of two records in which X and Y vary round different moans.

(For a more general form of the theorem cf. ref. 20.)

13. Reduction of Correlation due to mingling of nncorrelated

with correlated pairs.—Suppose that n
L
observations of x and y

give a correlation-coefficient

.1 ' m ’-re nr *
n,(rx<r„

Now let n
2

pairs be added to the material, the means and
standard-deviations of x and y being the same as in the first

series of observations, but the correlation zero. The value of
• %UmJ) will then be unaltered, and we will have

Sixy)

Whence'

(fi
x
4- nfio

^*2
’ %

. (H)

Suppose, for example, that a number of bones of the human
skeleton have been disinterred during some excavations, and
a correlation is observed between pairs of bones presumed
to come from the same skeleton, this correlation being rather

lower than might have been expected, and subject to some
uncertainty owing to doubts as to the allocation of certain

bones. If is the value that would be expected from other

records, the difference might be accounted for on the hypothesis
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that, 'in' a proportion fa-rpfa of all the pairs, the Ijones do

not really belong to the s£me skeleton, and have been virtually

paired at random. (For a more general form of, the theorem cf.

again ref. 20.)

14. The Weighted Mean.—The arithmetic mean M of a series

of values of a variable X was defined as the quotient of the sum
of those values by their number X, or

If, on the other hand, we multiply each several observed

value of X. by some numerical coefficient or weight W, the

quotient of the sum of such products by the sum of the weights

is defined as a weighted mean of X, and may be denoted by M'
so that

’

.. - jr=s(F.x)/s(ff).

The distinction between ‘‘weighted ” and “ unweighted ” means
is, it should be noted, very often formal rather than essential,

for the “weights” may be regarded as actual, estimated, or

virtual frequencies. The weighted mean then, becomes simply

an arithmetic mean, in which some new quantity is regarded

as the unit. Thus if we are given the means Mv M2,
M

B .
...

Mr of r series of observations, but do not know the number
of observations in every series,;we may form a general average

by takmg the arithmetic mean of all the means, viz. 2(3f)/r
}

treating the series as the unit. But if we know the number
of observations in every series it will be better to form the

'weighted mean 2(XJf)/^(X), weighting each mean in proportion

to the number of observations in the series on which it is based.

The second form of average would be quite correctly spoken
of as a weighted mean of the means of the several series: at

the same time it is simply the arithmetic mean of all the

series pooled together, i.e. the arithmetic^eaiv-obtained by
treating the observation and not the series as the unit.

(Chap, VII. § 13.) *
•

15. To give an arithmetical illustratioh^Vjommodity is sold

at different prices in different markets, it will be better to form
an average price, not by taking the arithmetic mean of the several

market prices, treating the market as the unit, but by weighting
each price in proportion to the quantity sold at that price, if

known, i.e. treating the unit of quantity as the unit of frequency.
Thus if wheat has bee'll sold in market si at an average price of

29s. Id. per quarter, in market B at an average price of 27s. 7d.,

and hr market G at an average price of 28s. 4d., we may, if^io
statement is made as to-the quantities sold at these prices (as very
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often happens in the ease of statements as to market prices), take

the arithmetic mean (28s. 4d.) as the general average. But if we
know that 23,930 qrs. were sold at A, only 26 qrs. at .B, and 3933;

qrs. at (7, it will be better to take the weighted mean

(29s. Id. x 23,930) + (27s. 7d. x 26) + (28s. 4d. x 3933)

27889
== ~,9s '

to the nearest penny. This is appreciably higher than the

arithmetic mean price, which is lowered by the undue importance

attached to the small markets B and 0.

In the case of index-numbers for exhibiting the changes in

average prices from year to year (cf\ Chap. VII. § 25), it may
make a sensible difference whether we take the simple arithmetic

mean of the index-numbers for different commodities in any one

year as representing the price-level in that year, or weight the

index-numbers for the several commodities according tct their

importance from some point of view ; and much has been written

as to the weights to be chosen. If, for example, our' standpoint

be that of some average consumer, we may take as the weight for

each commodity the sum which he spends on that commodity in

an average year, so that the frequency of each commodity is

taken as the number of shillings or pounds spent thereon instead

of simply as unity.

Bates or ratios like the birth-, death-, or marriage-ra^es of a

country may be regarded as weighted means. For, treating the

rate for simplicity as a fraction, and not as a rate per 1000 of the

population,
;

„ _ ,
total births

Birth-rate of whole country = r~ir~i
--T ------

J total population

__
birth-rate in each district x population in that district)

^(population of each district)

i.e. the rate for the whole country is the mean of the rates in the

different districts, weighting each in proportion to its population.

We use the weighted and unweighted means of such rates as

illustrations in §17 below,

. 16. It is evident that any weighted mean will in general differ

from the unweighted mean of the same quantities, and it is

required to find an expression for this difference. If r be the

correlation between weights. and variables, <tw and <rx the standard-

deviations, and w the mean weight, we have at once * -

S( W.X) - N(M.w + ro-w(Tx),

whence
_

If —M+ roy~j , .
.

(15)



222 THEORY OF STATISTICS, #

That Is to say, if the weights and variables are positively correlated,

the weighted mean is the greater
;

if negatively, the less. In some

cases r is very small, and then weighting makes little difference,

but in others the difference is large and important, r having a

sensible value and (rxcrw/w a large value.

17, The difference between weighted and unweighted means

of death-rates, birth-rates or other rates on the population in

different districts is, for instance, nearly always of importance.

Thus we have the following figures for rates of pauperism

(Jour. Slat Soc vol. lix. (1896), p, 349),

•

Percentages of the Population in

receipt of Relief.

January 1.

Arithmetic Mean
of Rates in

different Districts,

England and
Wales as a

whole.

1850 6*51 5*80

1860 5*20 4*26

1870 5*45 4*77

1881 3 *68 3*12

1891 3*29

•

2*69 .

In this case the weighted mean is markedly the less, and the

correlation between the population of a district and its pauperism
must therefore he negative, the larger (on the whole Urban) dis-

tricts having the lower -percentage in receipt of relief. On the

other hand, for the decade 1881-90 the average birth-rate for

England and Wales was 32*34 per thousand, the arithmetic

mean of the rates for the different districts 30*34 only. The
weighted mean was. therefore the greater, the birth-rate being
-higher in the more populous (urban) districts, in which there is

' a greater proportion of young married persons.

For the year 1891 the average population of a Poor-law district

was found to he roughly 45,900 and the standard-deviation <rw

56,400 (populations ranging from under 2000 to over half a
million). The standard-deviation a-x of the- percentages of the
population in receipt of relief was 1*24. We have therefore,

for the correlation between pauperism and population,

3*29- 2*69 459
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For ^jbe birth-rate, on the other hand, assuming that <r
t
Jw .

is approximately the same for the decade 1881-90 as in-1891,
1

we havener* being 4*08,

" 32 ‘34 - 30*34- 459
T ~

4-OS
" X

564
." =+-40.

The closeness of the numerical values of r in the two cases is,

of course, accidental.

18. The principle of weighting finds one very important

application in the treatment of such rates as death-rates, which

.

are largely affected by the age and sex-composition of the popula-

tion. Neglecting, for simplicity, the question .#! sex, suppose the

numbers of deaths are noted in a certain district for, say, the

age-groups Q~, 10—, 20-, etc., in which the fractions of the whole

population are p0, pv y;2 ,
etc., where 2(p) = l. Let the^death-

ratesfor the corresponding age-groups be d0K d-,, d
2,

etc. Then
the ordinary or crude death-rate for the district is

D-1(d.p) . . . "(16)

For some other district taken as a basis of comparison, perhaps
the country as a whole, the death-rates and fractions of the

population in the several age-groups may be 8
1
S
2 83 ... ,

?

r

2 %r2
ir
3 ... y

and the crude death-rate
.

T y.; .. A — 2S(5.7t) • . • . (1.7)

Now D and A may differ either because the cFs and 8’s differ

or because the p's and tt
?

s differ, or both. It may happen that

really both districts are about equally healthy, and the death-

rates approximately the same for all age-classes, but, owing to a

difference of 'weighting
,
the first average may be markedly higher

than the second, or vice versd. If the first district be a rural

district and the second urban, for instance, there will be a larger

proportion of the old in the former, and it may possibly have a

higher crude death-rate that the second, in spite of lower death-

rates in every class. The comparison of crude death-rates is

therefore liable to lead to erroneous conclusions. The difficulty

may be got over by averaging the age-class death-rates in the

district not with the weights pl p2 .ps . . .
given by its, own

population, but with the weights, tt
1

%r
2

'ir3 .... given by the

population of the standard district. The corrected death-rate for

the district .-'Will then be F

, . . . . (18)
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and I)' and A will be comparable as regards age-distribution.

There is obviously no difficulty in taking sex into account as well

as age if necessary. The death-rates must be noted for each sex

separately in every age-class and averaged with a system of

weights based on the standard population. The method is also

of importance for comparing death-rates in different classes of the

population, e.g. those engaged in given occupations, as well as in

different districts, and is used for both these purposes in the

Decennial Supplements to the Reports of the Registrar General

for England and Wales (ref. 16).

19. Difficulty may arise in practical cases from the fact that

the death-rates d
x
d
2
d» ... . are not known for the districts or

classes which it is desired to compare with the standard popula-

tion, hut only the#crude rates D and the fractional populations’

of the age-classes Pl p.2 pz .
. . . The difficulty may be partially

obviated (cf. Chap. IV. § 9, pp. 51 ~3) by forming what may be

termed a potential or standard death-rate A' for the class or

district, A' being given by .

Illl
’

A' = 3(8*) . \ . . • (19)

i.e. the rates of the standard population averaged Afeth the

weights of the district population. It is the crude death-rate

that there would be in the district if the rate in every age-

class were the same in the standard population. An
approximate corrected death-rate for the district or 'class is

then given By

,} . ;\;p .

.

(so)

D" is not necessarily, nor generally, the same as D'. It can

only be the same if

2(^.7
r) S(S.ir)

This will hold good if, e.g., the deifrii-rates in the standard
population and the district stand to one another in the same
ratio in all age-classes, i.e. B

l
/d

1
= S

2
/d

2
« $

s
/dz « etc. This method

of correction is used in the Annual Summaries of the Registrar
General for England and Wales.

Roth methods of correction—that of § 18 and that of the
present section—-are of great and growing importance. They
are obviously applicable to other rates besides death-rates, e.g.

birth-rates (cf. refs. 17, 18). Further, they may readily be
extended into quite different fields. Thus it has been suggest#!
(ref. 19) that corrected average heights or corrected average weights



• XL—CORRELATION : MISCELLANEOUS THEOREMS. 225

Of the children in different schools might be obtained on the

basis 8f a standard school population of given age and sex

composition, or indeed of given composition as regards hair and
eye-colour as well.

20. In §§ 14-17 we have dealt only with the theory of

the weighted arithmetic mean, but it should be noted that

any form of average can be weighted.' - Thus a weighted median
can be formed by finding the value of the variable such that

the sum of the weights of lesser values is equal to the sum
of the weights of greater values. A weighted mode could he

formed by finding the value of the variable for which the sum
of the weights was greatest, allowing for the smoothing of

casual fluctuations. Similarly, a weighted geometric mean could

be calculated by weighting the logarithms of55 every value of the

variable before taking the arithmetic mean, i.e.

l0„ Gi0e * 3(F)
*
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EXERCISES.

1. Find the values obtained for the standard-deviations in Examples ii.

(p. 139) and iii. (p. 141) of Chapter VIII. on applying Sheppard’s correction
for grouping,

2. Show that if a range of six times the standard-deviation covers at least 18
class-intervals if. Chap. VI. § 5), Sheppard’s correction will make a difference
of less than 0*5 per cent, in the rough value of the standard-deviation.

3. (Data from the decennial supplements to the Annual Reports of 'the
Registrar-General for England and Wales.) The following particulars are
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found fqr 36 small registration districts in which the number of births in a

decade ranged between 1500 and 2500 :— »

Decade.

Proportion of Male Births

per 1000 of all Births.

Mean,
Standard-
deviation. '

1881-1890 508*1 12*80

1891-1900 508*4 10*37

Both decades 508*25 11*65

It is believed, however, that a great part of the observed standard -deviation

is due to mere “ fluctuations of sampling ” of no real significance.

Given that the correlation between the proportions of male births in a

district in the two decades is +.0*36, estimate (1) the true standard-deviation

freed from such fluctuations of sampling
; (2) the standard-deviation of fluctua-

tions ofsampling, i.e. of the errors produced by such fluctuations in the observed
proportions of male births.

4. (Data from Pearson, ref. 11.) The coefficients of variation for breadth,

height, and length of certain skulls are 3*89, 3/50, and 3*24 per cent, respec-

tively. Find the “spurious correlation” between the breadth/length and
height/length indices, absolute measures being combined at random so that

they are uneorrelated. :

'

.

1

5. (Data from Boas, communicated to Pearson : cf. Fawcett and Pearson,

Proc> Boy. Soc., vol. Ixii. p. 413.) From short series of measurements on
American Indians the mean coefficient of correlation found between father and
son, and father and daughter, for cephalic index, is 0*14

;
between mother and

son, and mother and daughter 0*33. Assuming these coefficients should be
the same if it were not for the looseness of family relations, find the proportion

of children not due to the reputed father.

6. Find the correlation between Xj+X2 and.X2+X3 ;
X1} X2 and X3 being

uneorrelated, .. ,

7. Find the correlation between X, and aX-, + bXo, Xt and XQ beinn
uneorrelated.

*

8. (Referring to illustration iv.
} § 14, Chap. X.) Use the answer to

question 7 to estimate, very roughly, the correlation that would be found
between annual movements in infantile and general mortality if the mortality
of those under and over 1 year of age were uneorrelated. Note that

—

ge

i000 of°populat?ou }
“infantile mortality per 1000 births x

+ deaths over one year per 1 000 of population.

and treat the ratio of births to population as if it were constant at a rough
average value, say 0*033. The' standard-deviation of annual movements in

infantile mortality is (loc. cit.) 9*6, and that ofannual movements in mortality
other than infantile maybe taken' as; sensibly :

the..same as ..'that of: general'
mortality, or say 1 unit.

; . If the relation : t r- :

a.x
} + b.x>2 + c.cc3

=§
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* *

holds for all values of ay sr
2 and (which are, in our usual notation,

deviations from their respective .arithmetic means), find the correlations

•between xh x2 and ayin terms of their standard-deviations and the values of

a, 1) and c.

10. "What is the effect on a weighted mean of errors in the weights or the

quantities weighted, such errors being uncorrelated with each other, with the

weights, or with the variables— (1) if the arithmetic mean values of the errors

are "zero
; (2) if the arithmetic mean values of the errors are not zero ?

11. Of. (Pearson, “ On a Generalised Theory of Alternative -Inheritance,”

Phil. Trans. ,
vol. cciii., A, 1904, p. 53). If we consider the correlation

between number of recessive couplets in parent and in offspring, in a

Mendelian population breeding at random (such as would ultimately result

from an initial cross between a pure dominant and a pure recessive), the

correlation is found to be 1/3 for a total number of couplets n. If n~1, tile

only possible numbers of recessive couplets are 0 and 1, and the correlation

table between parent and offspring reduces to the form

Offspring.

Parent.

0 1 Total

0 5 1 6

1 1 1 2

Total 6 2 8

Verify the correlation, and work out the association coefficient Q,

12.

(Q/>the above, and also ^now, Proc. Toy. Soc
,
vol. Ixxxiii., B, 1910,

Table III., p. 42.) For a similar population the correlation between
brothers, assuming a practically infinite size of family, is 5/12. The table is

Second
First Brother. i

0 1 Total.
Brother.

0 41 7 48
'

~i

i
!

• 7 ; 9 16

Total 48 16
*

64

Verify the correlation, and work out the association coefficient Q.

13.

Referring to the notation of § 10, show that we have the following

expressions for the regressions in a fourfold table

N.S__(AB) (Aft

(-#)(£) {£) m
r

<r.2 __ NS _(AB) (aB)

<r> UM (A) {a)
'

Verify on the tables of questions'll and 12. **



CHAPTER XII.

PARTIAL CORRELATION.

1-2 . Introductory explanation— 3 . Direct deduction of the formulae for two

variables—4. Special notation for the general case :
generalised re-

gressions—5. Generalised correlations— 6. Generalised deviations and
standard-deviations

—

7-8 . Theorems concerning the generalised pro-

duct-sums—9 . Direct interpretation of the generalised regressions—

10-11. Reduction of the generalised standard-deviation—12 . Reduc-

tion of the generalised regression—13 . Reduction of the generalised

correlation-coefficient

—

14 . Arithmetical work : Example i. : Example
iL—-15. Geometrical representation .of correlation between three

variables by means of a model—16 . The coefficient of w-fold correlation

—17. Expression of regressions and correlations of lower in terms of

those of higher order—18 . Limiting inequalities between the values of

correlation-coefficients necessary for consistence— 1

9

. Fallacies.

1. In Chapters IX.-XL the theory of the correlation-coefficient for

a single pair of variables has been developed and its applications

illustrated. But in the case of statistics of attributes we found

it necessary to proceed from the theory *of simple association for

a single pair of attributes to the theory of association for several

attributes, in. order to be able to deal with the complex causation

characteristic of statistics
;
and similarly the student will find it

impossible to advance very far in the discussion of many problems

in correlation without sortie knowledge of the theory of multiple

correlation
,
or correlation between several variables. In such a

problem as that of illustration i., Chap. X., for instance, it might
be found that changes in pauperism were highly correlated

(positively) with changes in the out-relief ratio, and also with

changes in the proportion of old
;
and the question might arise how

far the first correlation was due merely to a tendency to give out-

relief more freely to the old than the young, i,e. to a correlation

between changes in out-relief and changes in proportion of old.

The question could not at the present stage be answered by work-

ing out the correlation-coefficient between the last pair of variables,

for we have as- yet no guide as to how far a correlation between

229 '
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the variables 1 and 2 can be accounted for by correlations

between 1 and 3 and 2 and 3. * Again, in the case of illustration iii.,

Chap. X., a marked positive correlation might be observed between,

say, the bulk of a crop and the rainfall during a certain period, and

practically no correlation between the crop and the accumulated

temperature during the same period
;
and the question might arise

whether the last result might not he due merely to a negative

correlation between rain and accumulated temperature, the crop

being favourably affected by an increase of accumulated temper-

ature if other things were equals but failing as a rule to obtain this

benefit owing to the concomitant deficiency of rain. In the prob-

lem of inheritance in a population, the corresponding problem is

of great importance, as already indicated in Chapter IV. It is

essential for the discussion of possible hypotheses to know whether

an observed correlation between, say, grandson and grandparent

can or cannot be accounted for solely by observed correlations

between grandson and parent, parent and grandparent.

\2. Problems of this type, in which it is necessary to consider

simultaneously the relations between at least three variables, and

possibly more, may be treated by a simple and natural extension

of the method used in the case of two variables. The latter case

was discussed by forming linear equations between the two
variables, assigning such values to the constants as to make the

sum of the squares of th<* errors of estimate as low as possible :

the more complicated case may *oe discussed by forming linear

equations between any one of the n variables involved, taking

each in turn, and the n - 1 others, again assigning such values to

the constants as to make the sum of the squares of the errors of

estimate a minimum. If the variables are X
x
X

2
X

B . . . . XM
the equation will be of the form

X
^
== a + b

2
.X

2 + A,.XS 4* . . . . + bn.Xn,

If in such a generalised regression or characteristic equation we
find a sensible positive value for any one coefficient such as b

2>

we know that there must be a positivS correlation between X
x

and X, that cannot be accounted for by mere correlations of X
x

and X, with X
3,
X

4,
or Xm for the effects of changes in these

variables are allowed for in The remaining terms on the right.

The magnitude of b
2

gives, in fact, the mean change in X
1

associated with a unit change in X
2
when all the remaining

variables are kept constant. The correlation between X
x
and

X
2

indicated by b
2
may be termed a partial correlation, as

corresponding with the partial association of Chapter IV., and it

is required to deduce from the values of the coefficients &, w.hiok

may be termed partial regressions, partial coefficients of corre-



231
i

XII.—PARTIAL CORRELATION.

lation^giving the correlation between X
x
and X

2
or other pair of

variables when the remaining variables X
B . ... . . Xn are 'kept

constant
,
or when changes in these variables are corrected or allowed

for, so far as this may be done with a linear equation. For examples
of such generalised regression-equations the student may turn to

the illustrations worked out below (pp. 239-247).

3. With this explanatory introduction, we may now proceed to

the algebraic theory of such generalised regression-equations and
of multiple correlation in general. It will first, however, be as

well to revert briefly to the case of two variables. In Chapter IX.,

to obtain the greatest possible simplicity of treatment, the value

of the coefficient r —yy'aqcr* was deduced on the special assump-

tion that the means of all arrays were strictly collinear, and the

meaning ' of the coefficient in the more general case was sub-

sequently investigated. Such a process is not conveniently

applicable when a number of variables are to be taken into

account, and the problem has to be faced directly : i.e. required
,

to determine the coefficients and constant term
, if any, in a

regression-equation
,

so as to make the sum of the squares of the

errors of estimate a minimum. We will take this problem "first

for the case of two variables, introducing a notation that can he

conveniently adapted to more. Let us take the arithmetic

means of the variables as origins of measurement, and let xv x
2

denote deviations of the two variables from their respective

means. Then it is required to determine a
l
and b

l2
?n the re-

gression-equation

x
1 - Oj -I- b12

.x
2 . . .

.
(a)

so as to make S(% a
1 + for m all associated pairs of

deviations x
1
and x

2 ,
the least possible. Put more briefly, if

we write

X.sl2•= - av + blTxff . .
.

(b)

so that sh2 is the root-mean-square value of the errors of estimate

in using regression-equation (a) (cf. Chap. IX. §14), it is required

to make sh2 a minimum. Suppose any value whatever to be

assigned to bw and a series of values of ar to be tried, s
1>2

being

calculated for each. Evidently ,<?

12 would be very large for

values of a, that erred greatly either in excess or defect of the

best value (for the given value of ^2),
and would continuously

decrease as this best value was approached
; the value of sh2 could

never become negative, though possibly, but exceptionally, zero.

If therefore the values of s
1>2

were plotted to the values of a
1
on

^ diagram, a curve would be obtained more or less like that

of fig. 44. The best value of a
x ,

fox which s
1<2

attained its
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minimum value, say cr12 ,
could be approximately estimate^ from

snob, a diagram
,
but it can b(£ calculated with much more exact-

ness from the condition that a
x

a!
r

x
be two values close above

and below the best, the corresponding values of sh2 are equal. Let
and (a

x + o) be two such values. Then if

M^’i - a
x -f b

12
.x2)

2 ~
'2(x

1
~ a

l + 6 + b
12
.x

2)
2

when 8 is very small, the value of a
x

is the best for the assigned
value of bu But, evidently, the equation gives, neglecting
the term m 82.

• *

that is,

a
x + 8

12
.^

2)
.as- 0,

whatever the value of b
}

is, again neglecting terms in £

or, breaking sum
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which ^ the value found by the previous indirect method of

Chapter IX From the fact that $
12

is determined so as to

make the value of - 6
12
#
2)

2 ' the least possible, the method
of determination is sometimes called the method of least squares.

Evidently all the remaining results of
,

Chapter IX. follow from

this, and notably we have for cr
1>2 ,

the minimum value of s
1<2 ,

the standard*deviation of errors of estimate

<rl/!=tr
l

2
(
1 _r

l2
2
)

’ ' • • ('0

4. Now apply the same method to the regression-equation

for n variables. Writing the equation in terms of deviations,

it follows from reasoning precisely similar to that given above

that no constant term need be entered 014 the right-hand

side. For the .partial regression-coefficients (the coefficients of

the Fs on the right) a special notation will be used in order

that the exact position of each coefficient may be rendered* quite

definite. Tim first subscript affixed to the letter h (which will

always be used to denote a regression) will be the subscript of

the x on the left (the dependent variable), and the second will

be the subscript of the x to which it is attached
;
these may

be called the primary subscripts. After the primary subscripts,

and separated from them by a point, are placed the subscripts

of all the remaining variables on the right-hand side as secondary
subscripts. The regression-equation will therefore be written

in the form

X
l
** &12.S4 . . . ft

• #2 + ^13.24 ..-.»•#$ + • • • + &1«.23 . . . (»-l
’ Xn • (1)

The order in which the secondary subscripts are written is,

it should be noted, quite indifferent, but the order of the
primary subscripts is material

;
e.g. b123 .

F
; n and b2l3 / > M

denote quite distinct coefficients, x
x
being the dependent variable

in the first case and x
2

in the second. A coefficient with p
secondary subscripts may be termed a regression of the jpth order.

The regressions bvp b2V hsv etc., in the case of two variables

may be regarded as of order zero, and may be termed total as

distinct from partial regressions. v

5. In the case of two variables, the correlation-coefficient rl2
may be regarded as defined by the equation

>12 =(%%)*.

We shall generalise this equation in the form

r
l2.34 . . . . « " (^12.34 . . . . n * ^21,Si * • (f)

Thkvis at present a pure definition of a new symbol, and it

remains to be shown that r12<S4 . . . .» mayh'eally be regarded as,
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f
' r

and possesses all the properties of, a correlation-coefficient; the

name may, however, be applied to it, pending the proof. A
correlation-coefficient with p secondary subscripts will be termed

a correlation of order p. Evidently, in tbe case of a correlation-

coefficient, the order in which both primary and secondary

subscripts is written is indifferent, for the right-hand side of

equation (2) is unaltered by writing 2 for 1 and 1 for 2. The

correlations r
12,

r
13,

etc., may be regarded as of order zero, and

spoken of as total
,
as distinct from partial, correlations.

. 6. If the regressions b12M .

'

.
• b13M w,

etc., be assigned tbe

“best” values, as determined by the method of least squares, the

difference between the actual value of aq and the value assigned

by tbe right-hand side of the regression-equation (1), that is, the

error of estimate,
c
will be denoted by xh2Z i.e. as a defini-

tion we have

#1.23. . ^12,34. . . n’#2 ~ ^13.24. .
.«* #8 .

”
^ln.23. . . • (^)

where x
x
x
2 . ... xn are assigned any one set of observed values.

Such an error (or residual
,
as it is sometimes called) denoted by a

symbol with/) secondary suffixes, will be termed a deviation of the

pth order. Finally, we will define a generalised standard-deviation

cri>23 ; . . . n by tbe equation

iY

•

0“i.2g . . . . n~ ^(#1.23 . . . n) • * • (4)
f *

AT being, as usual, the number of observations. A standard-

deviation denoted by a symbol with p secondary suffixes will be
termed a standard-deviation of the pth order, the standard-

deviations oq cr
2,

etc., being regarded as of order zero, the standard-

deviations oq..
2

<r%l etc.^(cf. eqn. (d) of § 3) of the first order,, and
so on.

7. From the reasoning of §3 it follows that the “ least-square
”

values of the partial regressions b12M . . . . n,
etc., will be given by

equations of the form

~
^12.34 . . . ; » * %+ • • • • ^in.23 . . . . (tt -1) * #»)

2

- - (^12.34 .... n + S)#2 + • • • * + #1».23 .... (n~l) • #»)
2

o being very small. That is, neglecting the term in 32
,

“
^12.34 .. . « •#2

'I' • • • • + ^1«.23 .... (n~l) • #») “

or, more briefly, in terms of tbe notation of equation (3),

2(a’
2

. xh2$ ~ 0 . . . . (5)

There are a large number of these equations, 1) for determin-
ing tbe coefficients bmt \ . . . n, etc., (n-1) again for determining
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the coefficients b2lM , . . . w etc., and so on : they are sometimes

termed the normal equations. If thestudent will follow the pro-

cess by which (5) was obtained, he will see that when the con-

dition is expressed that fr13<34 . . . . n shall possess the “least-square
JJ

value, x
2
enters into the product-sum with xu2g . . . , n y when the

same condition is expressed for &ia24 / , . .
x
3

enters into the

product-sum, and so on. Taking each regression in turn, in fact,

every x the suffix of which is included in the secondary suffixes

of xL2s .... n enters into the product-sum. The normal equations

of the form (5) are therefore equivalent to the theorem

—

The product-sum of any deviation of order zero with any deviation

of higher order is zero
,
provided the subscript of the former occur

among the secondary subscripts of the latter .

8. But it follows from this that

*^($1.34 . . . n • $2.34. . . n) = SPJ1.34 . . . »($2 ^23.4 .. . n * $3w » • •
““ ^2w.34 . . . (n—l) » $«)

=2(a?i.34 $2).
Similarly,

*t($1.34
. . . n * $2.34 . . . «) ^ ^($1 • $2.84 . . . «}»

Similarly again,

^{$1.34 . . . n • $2,34 . . . (ra-l)) =r ^($1.84 . . . n • $2)?

and so on. Therefore, quite generally,

^(‘^1.34 #2.31 ....«) ^ 2(^i,34 .... (n-q) • $*2.84 .... w)

ss 1

'^{$1 *.#2.34 .... n)

~l(x T ) (
* ^— ^V^l.34 . . . . n • $2.84 . . . . («-l)/

“ S(^l,84 ... n • %)

Comparing all the equal product-sums that may be obtained

in this way, we see that the product-sum of any two deviations is

unaltered by omitting any or all of the secondary subscripts of either

which are common to the twofand,
conversely

,
the product-sum of any

devia.fion of order p with a deviation of order p-f q, the p subscripts

being the same in each case, is unaltered by adding to the secondary

subscripts of the former any or all of the q additional subscripts of
the latter . 'V.,

It follows therefore from (5) that any product-sum is zero if all

the subscripts of the one deviation occur among the secondary sub-

scripts of the other . As the simplest case, we may note that x
l
is

uncorrelated with x2V and x2 micorrelated with x12 .

The theorems of this and of the preceding paragraph are of

fundamental importance, and should be easefully remembered.
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9. We have now from §§ 7 and 8—
^ ^(*2.34 *1.234 . . . . n)

___ n!/

2

;

S4 VT 1
- ^12.34 »

.
%- terms in x

z to x
t)

^1 * ‘%34 ....«) - ^12.34 . . . . n S(#2 • %34 .... Vi)

That is

;/
....

* ^
2.34 .... -h)

'(*1.34 • *2.34 : . . ,.)
- i1154 ;. . . . „ 2(4m .... „).

y
12.34 ,

= • v *3.34 ....

^(*2.34 ....») • (
7
)

l“™ •*— * «»s »

*^1-34 .... 71
== ^19 tjj. 7*74 .... 71 • ‘A'2.34

. . . . n

c
31 •...„! ana irom (4) that we may write

» = r
12.34

°2.34 ;
(8)

2-o-1/<r2
.

a* -1 • . . 71

&VZ2&2A* “fsrt** v-v
if wSS^fTS 1““

feasasSBslir
the residuals x, -1 x JLj r - f

S
c
13 a

f
d

; (2) workmg out

(3) working out thecon-elafnn Iff
8 t0r

l*
assooiated deviations

;

with themeiTf Krfb f«d^ associated

a practical one, M the arithme ,v m T°
uW not

> ll0WOT6r
. be

For,
01 0ldei

^~fand a correlation of orders - 1 .

-(*1.23 ...n) — -(<•
v'^ 1.23 . .

. («-!) • ^i.83 . . # n)

J) !-

JJ * '
' {U~ 1^('Zl ~ ^bi.23...(u~i)Xn - terms in x., to x A

‘hixrngh V eh. u»mber 0, ob„,,tim
.

^.23 . . . .....

TL23

4 (/!•

(«—

1

u(i -»i

hn.23 .... /„_!) . f̂t1.23 .

1«.2S . • . i'n—l),i) •

• • («•

(9)
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This is again the relation of the familiar form-
s'

with the secondary suffixes 23 1
)
added throughout.

It is clear from
, (9) that rlnt2S (

«—1>,
like any correlation of order

zero, cannot be numerically greater than unity. It also follows

at once that if we have been estimating x
x
from a?

2 ,
x
z . . . . #w_ 1}

'

xn will not increase the accuracy of estimate unless rln,23 (n_ 1}

(not rln) differ from zero. This condition is somewhat interesting,

as it leads to rather unexpected results. For example, if rle) = + 0*8,

+ 0*4, r23= +0*5, it will not be possible to estimate x
x
with

any greater accuracy from x
2 and x

%
than from alone, for the

value of r18>2
is zero (see below, § 13).

11. It should be noted that, in equation (9), ai?y other subscript

can be eliminated in the same way as subscript n from the suffix of

w so that a standard-deviation of orders can be expressed

in p ways in terms of standard-deviations of the next lower order.

This is useful as affording an independent check on arithmetic.

Further, crL23 {n-v can be expressed in the same way in terms

of (t! 23 .... and so on, so that we must have

cr1.23.,.n — °l(l ~ ( 1 "" ?1'U>)(1
~ ri4.2s) * *

• (1 ” rin.23...(n-l}) * (1^)

„ This is an extremely convenient expression for arithmetical use

;

the arithmetic can again be subjected to an absolute check by
eliminating the subscripts in a different, say the inverse? order.

Apart from the algebraic proof, it is obvious that the values must
be identical : for if we are estimating one variable from mothers, it

is clearly indifferent in what order the latter are taken into account.

12 . Any regression of order p may be
%
expressed in terms of

regressions of order p- 1. For we have

S(aJi.34. . . n • >*‘2.34 . . . n)= 2 ( 351.34 . . . (n~l) •
&’
2.34 . . . n)

—
.
2^1 .34 . .

.
(»—

n

(®2 ~ ^2n,34 . .
. {«—i) • ~ terms in to xn~~i)

= 2(a?i.S4.- . .<«-l}.«2.3t . . . (n-l)) ~ hn.34^/. <n~l)2(Xt.34 . . . (n-l)- %n.34. . . (n-

, E-eplacing b2n:

we have

&12.34 ... n • 0 *

2.34 ... «

or, from (9),

bio 34 .

'

by ^S.34 . . . («-l) • ^2.34 . . .
(«->!)/* n,34 ... (n~l)>

= &12.34 . .
. (n-l) * ffSL34 . . . (n-l) ” fan.3i... {n-l)*bn2.34 . (n-l). . . . (n-l),

-l)) -1) • &»!
• (n-l)

1 "7- u2nM . . , . (n-l) * ^n*2.34 . . . . («—1)

The student should note that this is an expression of the form

2,
^12 hn * &»2

- °12.n— V T ~i~~
1 ~ b2n • %

(
11

)
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with the subscripts 34 ... .
(n - 1) added throughout The

coefficient bl2M n may therefore be regarded as determined

from a regression-equation of the form

$1.34 . . . («-l)
“

^12.34 . . . n • $2.34 . . . («-!)+ ^1«.23 . . . («-l) • XnM . . . (»-l)*

i.e. it is the partial regression of ochSi t ;. . (n_i) on ;% 34 ....

xnM (n-1) being given. As any other secondary suffix might

have been eliminated in lieu of n, we might also regard it as

the partial regression of xm \-
. . n on x2M . ... . « >

$3.45 . . . . « being

given, and so on.

13. From equation (11) we may readily obtain a corresponding

equation for correlations. For (11) may be written

c

h — ^2.34 . . . . (n-1)
~~ rlnM .... (n~l) » ygw.34 .... (it-1 )

.°
r
j,34 . . . (W-l) .

1 ~ fln.34 . . . . (n-1) ,
(n-1)

Hence, writing down the corresponding expression for b2lM ,

„

and taking the square root

* _ rj2M .... (n-1) ~ ^ln.34 . . . . (n-1) » r2nM .... (n- 1) / "i c)\

1W’34 ”
(l.7" rln.U . . . . (»-l))* (1 “ r2n.34 («~1))*

This is, similarly, the expression for three variables

*12tHBP
with the secondary subscripts added throughout, and y12>S4 w

can he assigned interpretations corresponding to those of

above. Evidently equation (12) permits of an absolute check or

the arithmetic in the calculation of all partial coefficients of an

order higher than the first, for any one of the secondary suffixes

of r12i34 n can he eliminated so as to obtain another equation of

the same form as (12), and the value obtained for rVL?A n by
inserting the values of the coefficients of lower order in the

expression on the right must be the same in each case.

14. The equations now obtained provide all that is necessary

for the arithmetical solution of problems in multiple correlation.

The best mode of procedure on the whole, having calculated all

the correlations and standard-deviations of order zero, is (1) to

calculate the correlations of higher order by successive applications

of equation (12) ; (2) to calculate any required standard-deviations

by equation (10); (3) to calculate any required regressions by
equation (8): the use of equation (11) for calculating the
regressions of successive orders directly from each other is com-
paratively clumsy. We will give two illustrations, the first for
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three and the second for four variables. The introduction of

more variables does not involve any difference in the form of the

arithmetic, but rapidly increases the amount.
Example i.—The first illustration we shall take will be a

continuation of example i. of Chapter IX., in which the correla-

tion was worked out between (1) the average earnings' of agri-

cultural labourers and (2) the percentage of the population in

receipt of Poor-law relief in a group of 38 rural districts. In

Question 2 of the same chapter are given (3) the ratios of the

numbers in receipt of outdoor relief to the numbers relieved in the

workhouse, in the same districts. Required to work out the partial

correlations, regressions, etc., for these three variables.

Using as our notation 'X
x = average earnings, X, — percentage of

population in receiptof relief, X
3
— out-relief ratio, the first constants

determined are

—

My— 1 5*9 shillings cr, — 1*71 shillings

M
2 = 3*67 per cent. tr

2= 1 ‘29 per cent.

'*79 <x
3 = 3*09

r10
= - 0*o6
= -0*13

r
2
'=

H- 0*60

To obtain the partial correlations, equation (12) is used direct in

its simplest form

—

__
r
i2 ~ Us r

2S

The work is best done systematically and .the results collected

in tabular form, especially if logarithms are used, as many of the

logarithms occur repeatedly. First it will be noted that the

logarithms of (1 ~r2
)* occur in all the denominators; these had,

accordingly, better be worked out at once .and tabulated (col. 2 of

the table below). In col. 3 the product term of the numerator of

1. 2. 3. 4. 6 . 6. 7. 8. 9.

r. log
Product
Term.

Numera-
tor.

log
Num.

log
Denom.

Correlation of

First Order.
log s/i- T®.

log. Value.

r12=- 0-66

rr»- -0*13
r23= +0*60

1*87580
1*99629
1*90309

-0*0780
-0*3960
+0*0358 !

-0*5820
+0*2060
+0*5142

1*76492
1*42488
1*71113

!

1*89938
1*77889
1*87209

1*86554
1*64599
1*83904

9*12.3 -0*73
}*13*2+0’44

9*23.1+0*69

1*83216 *

1*95267
1*85946

each partial coefficient is entered, i.e. the product of the two other

coefficients on the remaining lines in col. 1 ; subtracting this from
the coefficient on the same line in col. 1 we have the numerator(eol.

4) and can enter its logarithm. The logarithm of the denominator
(col 6) is obtained at once by adding the two logarithms of (1 - r-f
on the remaining lines of the table, and subtracting the logarithms
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of the denominators from* those of the numerators we have the

logarithms of the correlations of the first-order. It is als<? as well

to calculate at once, for reference in the calculation of standard-

deviations of the second-order, the values of log 1 -~r2 for the

first-order coefficients (col. 9).

Having obtained the correlations we can now proceed to the

regressions. If we wish to find all the regression-equations, we
shall have six regressions to calculate from equations of the form

^12-3
~ r

i2-3
• crhsl<r2-Z-

These will involve all the six standard deviations of the first

order (Toi, (7v>o, etc. But the standard-deviations of

the first-order ar% not in themselves of much interest, and the

standard-deviations of the second-order are so, as being the

standard-errors or root-mean-square errors of estimate made in

'using •the regression-equations of the second-order. We may
save needless arithmetic, therefore, by replacing the standard-

deviations of the first-order by those of the second, omitting the

former entirely, and transforming the above equation for

to the form

^12-3
“ r

12.3
• °1.23/^2.13.

This transformation is a useful one and should be noted by the

student* The values of •each a may be calculated twice inde-

pendently by the formulae of thS form

<r
i.23

= °i(1 - (1 - r?s.2)
s

.

so as to check the arithmetic
; the work is rapidly done if the

values of log J 1 -r1 have been tabulated. Th^ialues found are

log cr1<)3 = 0*06146

log ovw- 1*84584

0*34571
13

log (To

7
1-23

"

r
2.13

=

1*15

0*70

2*22J 342~ v * r
w 3.12

From these and the logarithms of the r* s we have

log .512.3 = 0*0S116, = -1*21 : log ^3.2 = 1*36174, 6
13 .2 =.+ 0*23

log = J'64993, ^21.3— -0*45
; log b

23 .t
^ 1*33917, Z>

28.j
= + 0*22

log ^
3i >2

=1*93024, ^1>2
= +0*85 : log />

S2>1 = 0*33891, <Ca =: +2*18

That is, the regression-equations are

(0 *i
s

(-) 2+
(3) *3 =

- 1 *21 #2 + 0*23 #
3

-0*45 x\ + 0*22 4
+ 0*85 ii'

j

+ 2*18 #2
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or, transferring the origins to zero,

(
1 )

Earnings X
x
- + 1 9*0*- 1 *21 X> + 0*23 X.

(X) Pauperism X, = + 9*55 - 0*45 X* + 0*22 X*
(3) (hit-relief ratio X, — 15*7 + 0*85 X

l
~}- 2*18 X

2

The units are throughout one shilling for the earnings X
x ,

1

per cent, for the pauperism and 1 for the out-relief ratio X
s

.

The first and second regression-equations are those of most
practical importance. The argument has been advanced that

the giving of out-relief tends to lower earnings, and the total

coefficient (r
13
= -0*13) between earnings (X

x )
and out-relief

(Xg), though very small (cf. Chap. IX. § 17), does not seem
inconsistent with such a hypothesis. The partial correlation

coefficient (r
13 .2

= + 0*44;) and the regression-equation (1), how-

ever, indicate that in unions with a given percentage of the

population in receipt of relief (X
2)

the earnings are highest *vhere

the proportion of out-relief is highest
;
and this is, in so far,

against the hypothesis of a tendency to lower wages. It remains

possible, of course, that out-relief may adversely affect the possibil-

ity erf earning, e.g. by limiting the employment of the old. As
regards pauperism, the argument might be advanced that the

observed correlation (r23 ~ + 0*60) between pauperism and out-

relief was in part due to the negative correlation (r33 = - 0-13)

between earnings and out-relief. Such & hypothesis woujfi have

little to support it in view of the smallness -and doubtful signifi-

cance of r
13,

and is definitely contradicted by the positive partial

correlation r
23>1 = + 0*69, and the second regression-equation. The

third regression-equation shows that the proportion of out-relief is

on the whole highest where earnings arethighest and pauperism

greatest. It should be noticed, however, that a negative ratio is

clearly impossible, and consequently the relation cannot be strictly

linear; but the third equation gives possible (positive) average

ratios for all the combinations of pauperism and earnings that

actually occur.

Example ii.—(Four variables.) As an illustration of the form
of the work in the case of four variables, we will take a portion

of the data from another investigation into the causation of

pauperism, viz. that described in the first illustration of Chapter X.,

to which the student should refer for details. The variables are

the ratios of the values in 1891 to the values in 1881 (taken as

100) of

—

1 . The percentage of the population in receipt of relief,

2. The ratio of the numbers given outdoor relief to the numbers
relieved in the, workhouse,

3. The percentage of the population over 65 years of age,

16
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4. The population itself, «

in the metropolitan group.*of 32 unions, and the fundamental

constants (means, standard-deviations and correlations) are as

follows :

—

Table I.

1.

Means.

2;

Standard-

deviations.

3.

Correlation-

coefficient.

1i>3

i 104-7 i. 29*2 12 + 0*52

-

1*93154

2 90*6 2 41-7 13 + 0*41 1*96003

3 107-7 3 5*5 H -0*14 1*99570

4 111 3 4 23*8 23 + 0*49 1*94038
— • — — ’ — 24 + 0-23 1-98820

# —
.

T~~ 34 + 0*25 1-98598

It is seen that the average changes are not great; the per-

centages of the population in receipt of relief have increased on

an average by 4*7 per cent., the out-relief ratio has dropped by
9*4 per cent., and the percentage of old has increased by 7*7

per cent., at the same time as the population of the unions has

risen on the average byjl‘3 per cent. At the same time the

standard-deviations of the first? second, and fourth variables are

very, large. As a matter of fact, while in one union the

pauperism decreased by nearly 50 per cent, and in others by

20 per cent., in some there were increases of 60, 80, and 90

per cent. similarly, iiifthe case of the out-relief,m several unions

the ratio was decreased by 40 to 60 per cent., a consistent

anti-out-relief policy having been enforced; in others the ratio

was doubled, and more than doubled. As regards population,

the more central districts show decreases ranging up to 20 and
25 per cent., the circumferential districts increases of 45 to 80
per cent. The correlations of orde?- zero are not large, the

changes in the rate of pauperism exhibiting the highest correlation

with changes in the out-relief ratio, slightly less with changes
in the proportion of old, and very little with changes in

population.

The correlations of the second order are obtained in two steps.

In the first place, the six coefficients of order zero are grouped in

four sets of three, corresponding to the four sets of three variables

formed by omitting each one of the four variables in turn (Table
II. col. 1). Each of these sets of three coefficients is 4ben
treated in the same manner as in the last example, and so the
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Table II’,

<9

1.

Correlation -

coefficient,

(Zero Order).

: 2.

Product
Term of

Numerator.

.
,a. ;

'

Numerator.

4.

Correlation-

coefficient

(First Order).

.
i

5.

log \/l - 7+

12 + 0-52 + 0*2009 + 0*3191 12*3 + 0*4013 1*96187

13 + 0*41 + 0*2548 , + 0*1552 13*2 + 0*2084 1*99035

23 4-0*49 + 0 *2132 + 0*2768 23*1 + 0*3553 1*97070

12 + 0*52 -0*0322 + 0*5522 12*4 + ^*5781 1*91355
.

14 -0*14 + 0*1196 -0*2596 14*2 -0*3123 1*97772

24 + 0*23 -0*0728
|

+ 0*3028
. ;

24*1 + 0*3580 1*97022

13 + 0*41 -0*0350 + 0-4450 13*4 + 0*4642 1*94731

14 -0*14 + 0*1025 -0*2425 14*3 -0*2746 1*98297 •

34 + 0*25 -0*0574 + 0*3074 ! 34*1 + 0*3404 1*97326

23 + 0*4.9 + 0 *0575 + 0*4325 23*4 + 0*4590 1*94868*

24 + 0*23 + 0*1225 + 0*1075 24*3 + 0*1274 1*99645

34 + 0*25 + 0*1127 + 0*1373 34*2 + 0*1618 1*99424

9

Table* II I.

1. 2.

3.

4. 5.

Correlation- Product Qorrelation-

coefficient

( First Order).

Term of

Numerator.
Numerator. coefficient

(Second Order).

log VI ~ F2.

12*4 + 0*5731 + 0*2131 + 0*3600 12-34 + 0*457 1*94901
13*4 +0*4642 + 0*2631 + 0*2011 13*24 +0*276 1-9S277
23*4 + 0*4590 + 0*2660 i +0*1930 23*14 + 0*266 1*98408

12*3 + 0*4013 -0*0350 + 0*4363 12*34 + 0*457 -

14*3 -0*2746
|

+0*0511 -0*3257 14*23 -0*359 1*97013
24*3 +0*1274

|

- 0*1102 + 0*2876 24*13 + 0*270 1*98359

13*2 + 0*2084 !
-0*0505 + 0*2589 13*24 + 0*276

14*2 -0*3123 + 0*0337 -0*8460 14*23 -0*359 —
34*2 + 0*1618 - 0*0651 + 0*2*269 3412 + 0*244 1*98664

23*1 +0*8553
j

+0*1219 + 0*2334 .23*14
|

+0*266
24*1 + 0 ‘3580 + 0*1209 + 0*2371 24*13 + 0*270 —
SJ-i + 0*3404

i

+0*1272 + 0*2132 34*12 + 0*244

*
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correlations of the first order (Table II. col. 4) are obtained.

The first-order coefficients . are then regrouped in sets of three,

with the same secondary suffix (Table III. col. 1), and these

are treated precisely in the same way as the coefficients of order

zero. In this way, it will be seen, the value of each coefficient

of the second order is arrived at in two ways independently, and

so the arithmetic is checked : r
12.34

occurs in the first and fourth

lines, for instance, r
13<24

in the second and seventh, and so on.

Of course slight differences may occur in the last digit if a

sufficient number of digits is not retained, and for this reason the

intermediate work should be carried to a greater degree of

accuracy than is necessary in the final result ; thus four places

of decimals were l^tained throughout in the intermediate work of

this example, and three in the final result. If he carries out an
independent calculation, the student may differ slightly from

the logarithms given in this and the following work, if more or

fewer figures are retained.

Having obtained the correlations, the regressions can be calcu-

lated -from the third-order standard-deviations by equations of the

,
form (as in the last example),

h 2*34 “ **
12.34

so the .standard-deviation® of lower orders need not he evaluated.

Using equations of Hie form *

we find

“ 0*1(1 -^(I -*14.23)?

= 0*1(1 - rh)Kl - - 4.34)^

log 01 .234= 1*35740

log cr„ 134
= 1*50597

log 0*

3 .124
= 0*65773

log 0*
4 -123

1 ^^9 1

4

<7
l*234
—^2*8

°'2.134= 32 ’1

03.124= 4*55

0*

4.123= 21*3

All the twelve regressions of the second order can be readily
calculated, given these standard deviations and the correlations,

but we may confine ourselves to the equation giving the changes
in pauperism (XJ in terms of other variables as the most impor-
tant. It will be found to be

= 0*325#
2
4* 1 *383^ - 0-383^

4 ,

or, transferring the origins and expressing the equation in terms of
percentage-ratios,

31T1-0-325X + 1-383X>-0*383X,
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or, again, in terms of percentage-changes (ratio - 100) :
—

Percentage change in pauperism :

• = H- 1*4 per cent.

4-0*325 times the change in out-relief ratio.

4-1*383 „ „ proportion of old.

- 0*383 „ „ population.

These results render the interpretation of the total coefficients,

which might be equally consistent with several hypotheses, more
clear and definite. The questions would arise, for instance,

whether the correlation of changes in pauperism with changes in

out-relief might not be due to correlation of the latter with the

other factors introduced, and whether the negative correlation with

changes in population might not be due solely to the correlation

of the latter with changes in the proportion of old. As a matter

of fact, the partial correlations of changes in pauperise! with

changes in out-relief and in proportion of old are slightly less than

the total correlations, but the partial correlation with changes in

population is numerically greater, the figures being •*»

rn~ +0'52 r
12.34

= +0'46
rw =+0-41 r13.24

= +0-28
ru = -0-14 ’m.23

= -°'36

So far, then, as wo have taken the factors of the cSse into

account, there appears to be a true correlation between changes
in pauperism and changes in out-relief, proportion of old, and
population—the latter serving, of course, as some index to

changes in general prosperity. The relative influences of the

three factors are indicated by the regression-equation above.

[For the full discussion of the case cf. Jour, Roy, StaL Soc.,

vol. Ixii
, 1899.]

15. The correlation between pauperism and labourers
3

earnings

exhibited by the figures of Example i. was illustrated by a diagram
(fig. 40, p. 180), in Which gbales of “pauperism” and “earnings”,

were taken along two axes at right angles, and every observed

pair of values was entered by marking the corresponding point

with a small circle : the diagram was completed by drawing in

the lines of regression. In precisely the same way the correlation

between three variables may be represented by a model showing the

distribution of points in space
;
for any set of observed values Xv

X>, may be regarded as determining a point in space, just as

any pair of values X
l
and X

2
may be regarded as determining a

point in a plane. Fig. 45 is drawn from such a model, constructed

from the data of Example i. Four pieces of wood are fixed together
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like the bottom and three sides of a box. Supposing the open

side to face the observer, a scale of pauperism is drawn vertically

upwards along the left-hand angle at the back of the “box, the

vs -jzk'i"'’' Ad—

r

Fig, 45.—Model illustrating the Correlation between three Variables
: (1)

Pauperism (percentage of the population in receipt of Poor-law relief)
;

(2) Out-relief ratio (numbers given relief in their homes to one in the
workhouse)

; (3) Average Weekly Earnings of agricultural labourers,

(data pp. 178 and 189). A, front view
;

J>, View of model tilted till the
plane of regression for pauperism on the two remaining variables is g^en
as a straight line.
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scale starting from zero, as very small values of pauperism occur:

a scale of out-relief ratio is taken along the angle between the

back and bottom of the box, starting from zero at the left : finally,

the scale of earnings is drawn out towards the observer along the

angle between the left-hand side and the bottom, but as earnings

lower than 12s. do not occur, the scale may start from 12s. at the

corner. Suitable scales are
: pauperism, 1 in. = 1 per cent.; out-

relief ratio, 1 in. = 1 unit; earnings, 1 in. == Is.
;
and the inside

measures of the model may then be 17 in. x 10 in. x 8 in. high,

the dimensions of the model constructed. Given these three

scales, any set of observed values determine a point within the

“box.” The earnings and out-relief ratio for some one union are

noted first, and the corresponding point marked on the baseboard

;

a steel wire is then inserted vertically in the* base at this point

and cut off at the height corresponding, on the scale chosen, to

the pauperism in the same union, being finally capped, with a

small ball or knob to mark the “point” clearly. The model

shows very well the general tendency of the pauperism to be the

higher the lower the wages and the higher the out-relief, for the

highest points lie towards the backhand right-hand side of the

model. If some representation of all three equations of regression

were to be inserted in the model, the result would be rather

confusing
;
so the most important equation, viz. the second, giving

the average rate of pauperism in term§ of the other variables, may
be chosen. This equation represents a plane : the lines’ in which

it cuts the right- and left-hand sides of the “box” should be

marked, holes drilled at equal intervals on these lines on the

opposite sides of the box (the holes facing each other), and threads

stretched through these holes, thus outlining the plane as shown
in the figure. In the actual model the correlation-diagrams (like

fig. 40) corresponding to the three pairs of variables were drawn
on the hack sides arid base: they represent, of course, the eleva-

tions and plan of the points.

The student possessing some skill in handicraft would find it

worth while to make such a model for some case of interest to

himself, and to study on it thoroughly the nature of the plane of

regression, and the relations, of the partial and total correlations.
'"16. If we write

.... 3
.-“ fri0 "" .... »)) • ‘ (14)

it may be shown that Ji u^ .... is the correlation between
a’j and the expression on the right-hand side of the regression

-

<

equation, say eLa3 where
AA*' i

,:' A' A

^

A AA 'A -A
: a.AA' AO'AA AAaAAA-: A'A--'

*1.25... — A.SI ...)!• x‘2 + A.24. ., » • *3+ • • •' + A.®. .

.

l»-t) ^ n • 04 )
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For we have - #

. 6^ 23
~ ~~

^t.2S . . . n) ~ (^l
*“

and also '

2(423 n) = 2(% “ *1.23 . . . .

«)* = ^(O'l - °1.23 «)

whence the correlation between x
l
and eh2S , . . n is

(<*1 ~ (Ti.ss .... n)*

°"i

the value of Rim , .
given by (13). The value of i? is

•accordingly a useful datum as indicating how closely x
l

can

be expressed in terms of a linear function of <r
2,
xz .... xn,

and

the values of the regressions may be regarded a*s determined

by the condition Shat R shall be a maximum. Its value is

essentially positive as the product-sum 2(^lveL23 . . , _ n) is positive.

R maj*-be termed a coefficient of (n-l)-fold (or double, triple,

etc.) correlation
;

for n variables there are n such correlations,

but in the limiting case of two variables the two are identical.

Th^, value may be readily calculated, either from <rL23 . t , . n and

<r
1
or directly from the equation

1 — R\[n , . . «)
~ (1 “ yis)(l ~ ^TasXl “ ^*

34 .23)
••’(!*“ rin.23. . . («-!))• 0®)/

It is obvious from this equation that since every bracket on

the right is not greater than unity, -
.

^ “*
^1(23 . . .

. 7 r
l2»

Hence Rm . . _ nj cannot be numerically less than r
l2. For the

same reason, rewriting (15) in every possible form, Rm .

•

. n)

cannot be numerically #less than rI2, rls,
.... rlw i.e. any one

of the possible constituent coefficients of order zero. Further,

for similar reasons, Rl{iS\ t . n) cannot be numerically less than
any possible constituent coefficient of any higher order. That
is to say, R1(23 . n) is not numerically less than, the greatest

of all the possible constituent coefficients, and is usually, though
not always, markedly greater. Tl/as in Example i., Rm)
(the coefficient of double correlation between pauperism on
the one hand, out-relief and labourers

7

earnings on the other)

is 0*839, and the numerically greatest of the possible constituent
coefficients is r

12<s
= -0*73. Again, in Example ii., Runn is

0*626, and the numerically greatest of the possible constituent
coefficients is r124 = + 0*573.

The student should notice that R is necessarily positive.

Further, even if all the variables Xv X>, . ... Xn were 'strictly

uncorrelated in the original universe as a whole, we should expgpt
r
i2>

r
i3 -2>

r
i4 .23>

etc *j to exhibit values (whether positive or negative)
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differing from zero in a limited sample. Hence, R will not
tend, on an average of such samples, to be zero, but will

fluctuate round some mean value.* This mean value will

be the greater the smaller the number of observations in the

sample, and also the greater the number of variables. When
only a small number of observations are available it is,

accordingly, little use to deal with a large number of variables.

As a limiting case, it is evident that if we deal with n variables

and possess only n observations, all the partial correlations

of the highest possible order will be unity.

17. It is obvious that as equations (11) and (12) enable us to

express regressions and correlations of higher orders in terms of

those of lower orders, we must similarly be able to express, the

coefficients of lower in terms of those of higher orders. Such
expressions are sometimes useful for theoretical work. Using the

same method of expansion as in previous cases, we have ^

0-2(a-
. . n • %84 .... (n-l))

^(,r
l « %34 .... (n~1)) ^12.34 . .

That is,

b

lre.23 . ,

12.34 .... (re-1)

'

5
^12.34 , , re + bh

n 2(a\> • aiy.jH
. . . . (w—d)

(n-l) ^(;
*’re

• ^2.34 .... (re-1))

(re-1) • fr»2.34 ... . (n-1)*

In this equation the coefficient on the left and the last on the

right are of order n - 3, the other two of order n ~ 2. We therefore

wish to eliminate the last coefficient on the right. Interchanging

the suffixes 1 for n and n for 1, we have

(re-1)
’

(re-1) «-!)• (re— 1)*

Substituting this value for bn2.

^

have

2 __ &12.34 .... re
+"

^ln.23 .

°12.34
“

<n„ 1}
in the first equation we

,
(re-1) • wre2.13 . . ,

(re-1)

(16)
^ire.23 . . . . («-l) • ^wl.23 .... (re—1)

This is the required equation for the regressions
;

it is the equation

"12 "
_
&12.re

i *"* bln 9 . bn-

with secondary suffixes 34 .... added throughout. The
corresponding equation for the correlations is obtained at once

by writing down equation (16) for A,u>
4

1

... i«-n and taking the

square root of the product (cf. § 13) ;
this gives

-

(re-1)
*

. * + (w-1) * r2re,13 .... (re-1)

a (n-l))
(17)
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which is similarly the equation

•n 2.« + nn.2-

(1-^(1 ~rU\

with the secondary suffixes 34 , ... (n~ 1) added throughout.

18. Equations (12) and (17) imply that certain limiting

inequalities must hold between the correlation-coefficients in

the expression on the right in each case in order that real

values (values between ± 1) may be obtained for the correlation

-

coefficient on the left. These inequalities correspond precisely

with those “conditions of consistence ” between class-frequencies

with which we dealt in Chapter II., but we propose to treat them
only briefly here.* Writing (12) in its simplest form for r

12<3,

we must have 4.3< 1 or

feg-TiS ' r
'2'i)

2
> I

(i~4)(i-4)

4 +4 +4 ~ .2rjaW?3< 1

if the three rs are consistent with each other,

as known, this gives as limits for>
23

si Jl —4 ~4

+

^'i2
rb

that is,

If we take r

(18)

12’ ‘
18

12' 13

Similarly writing (M) in its sfmplest form for r,

r
l2-3’ ^*13'2’ r

2

rfo

we must have

12.3 + 4.2 + 4.1 + 2^2.3^13.2^3.1< 1

in terms of

(19)

and therefore, if stid r
13>2

are given, r231 must lie between

the limits

~
^12.3^13.2 + ~ ~ 4.2+ ^2.3^3.>

The following table gives the limits of the third coefficient in

a few special cases, for the three coefficients of zero order and

of the first order respectively :

—

Value of Httitsof

sis or rio.3. i'is or n;5.2. m. U23.1.

0 0 +1 + 1

+ 1 + 1 + i -1
+ 1 + 1 -l +1
±Vo*5. ±\/0-ii 0, +1 o, -1
+'Vo *5

•f* s/0’5
*

03
-l o, + 1
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Theu student should notice that the set of three coefficients of

order zero and value unity are only consistent if either one only,

or all three, are positive, i.e. 4-

1, 4- f
,

4- 1, or - 1, - 1, 4-
1 ;

but

not - I\ - 1, - I. On the other hand, the set of three coefficients

of the first order and value unity are only consistent if one only,

or all three, are negative : the only consistent sets are 4-1, 4- 1,

-1 and -1, — 1, — 1. The values of the two given r
J

s need to

be very high if even the sign of the third can be inferred; if the

two are equal, they must be at least equal to av/0'5 or *707 ... .

Finally, it may be noted that no two values for the known
coefficients ever permit an inference of the value .zero for the

third; the fact that 1 and 2, 1 and 3 are uncorrelated, pair and
pair, permits no inference of any kind as to the correlation

between 2 and 3, which may lie anywhere between 4-1 and - 1.

19. We do not think it necessary to add to this chapter a

detailed discussion of the nature of fallacies on which the, theory

of multiple correlation throws much light. The general nature of

such fallacies is the same as for the case of attributes, and was

discussed fully in Chap. IV, §§ 1-8. It suffices to point out the

principal sources of fallacy which are suggested at once by* the

form of the partial correlation ft

'12 ' 13 *

1 =^Ki,-4()

(a)

and from the form of the corresponding expression for r
12

in terms

of the partial. coefficients

r ' O-V: 0)

From the form of the numerator of (a) it is evident (1) that even
if r

:̂

be zero, r12 , 3
will not be zero unless either r

13
or r

2g,
or

both, are zero. If r
ls

and n>3 are of the same sign the partial

association will be negative
;
if of opposite sign, positive. Thus

the quantity of a crop height appear to be unaffected, say, by
the amount of rainfall during some period preceding harvest:

this might be due merely to a correlation between rain and low

temperature, the partial correlation between crop and rainfall

being positive and important. We may thus easily misinterpret

a coefficient of correlation which is zero. (2) -rm may be, indeed

often is, of opposite sign to rw and this may lead to still more
serious errors of interpretation.

From the form of the numerator of (6), on the other hand, we
see that, conversely, r

V2
will not be zero even though r123 is zero,

unless, either r132 or n23>1 is zero. This corresponds to the theorem
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of Chap. IV. § 6, and indicates a source of fallacies similar to

those there discussed. •

20. We have seen (§ 9) tliat rl%z is the correlation -between xhz
and #

2 .s,
and that we might determine the value of thuf partial

correlation by drawing up the actual correlation table for the two

residuals in question. Suppose, however, that instead of drawing

up a single table we drew up a series of tables for values of #
1>3

and a’o.s associated with values of x
s

lying within successive

class-intervals of its range. In general the value of rm would

not be the same (or approximately the same) for all such tables,

but would exhibit some systematic change as the value of x
$

increased. Hence r
12<3

should be regarded, in general, as of the

nature of an average correlation : the cases in which it measures

the correlation between xhZ and x2B for every value of xz (cf

Chap. XVI.) are probably exceptional. The process for deter-

mining*partial; associations (cf. Chap. IV.) is, it will be remembered,

thorough and complete, as we always obtain the actual tables

exhibiting the; association between, say, A and B in the universe

of G}

s and the universe of y’s : that these two associations may
differ materially, is illustrated by Example i. of Chap. IV.

(pp. 45-6). It might sometimes serve as a 'useful check on
partial-correlation work to reclassify the observations by the

fundamental methods of that chapter. For the general case an
extension of the method of^tlje “correlation-ratio” (Chap. X., § 20)
might b% useful, thegigh exceedingly laborious. It is actually

employed in the paper cited in ref. 7 and the theory more fully

developed in ref, 8.
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EXERCISES.

1. (Ref. 10.) The following means, standard-deviations, and correlations are

found lor

X
l
~ seed-hay crops in cwts. per acre,

Xo= spring rainfall in inches,

X3
= accumulated temperature above 42° F. in spring,

in a certain district of England during 20 years.

AT, = 28-02 <r,= 4-42 rM= + 0'80

Ma
= 4-91 o-.=l-I0 r,s

=-0'40
lf3= 594 cr3 =:85 r23=“0*56

Find the partial correlations and the regression-equation for hay-crop on spring

rainfall and accumulated temperature.

2. (The following figures must be taken as an illustration only: the data

on which they were based do not refer to uniform times or areas.)
^

deaths of infants under 1 year per 1000 births in same year (infantile

mortality).

X2= proportion per thousand of married women occupied for gain.

X
}
= death -rate of persons over 5 years of age per 10,000.

X\= proportion per thousand of population living 2 or more to a room
(overcrowding). "*

? i

Taking the figures below for 30 urban areas in England and Wales, find the

partial correlations and the regression-equation for infantile mortality on the

other factors.

: - 0 "37

* -f 0’23

3. If all the correlations of order zero are equal, say= r, what are the values

of the partial correlations of successive orders ?

Under the same condition, what is the limiting value of r if all the equal

correlations are negative and ^variables have been observed ?

4. What is the correlation between and £c2<1 ?

5. Write down from inspection the values of the partial correlations for the

three variables

Xv X2} and X3=a.X1 + b.X2.

Check the answer to Qu. 7, Chap. XI., by working out the partial

correlations.

6. If the relation

a.x1 4- b. x.2
4- c. a-y—

0

holds for all sets of values of xl}
x2} and a%, what must the partial correlations

be?
"‘Check the answer to Qu. 9, Chap. XL, by working out the partial

correlations. . *

l/j = 164 0^ 20*0 r12
= 4-0*49 ''23

M2
= 158 cr2= 74*9 7Ts=+0-?8 r24 :

if3= 143 <r3
= 22*4 r14= 4-0*20 **34

l/4= 205 04=130*0



PART III.—THEORY OF SAMPLING.

CHAPTER XIII.

SIMPLE SAMPLING OP ATTRIBUTES.

1 The problem of the present Part—2. The two chief divisions of the theory

of sampling—3. Limitation of the discussion to the ease of simple

sampling—4. Definition of the chance of success or failure of a given

event— 5. Determination pf the mean and standard-deviation of the

• number of successes inn events—6. The same for the proportion of

successes in n events : the standard-deviation of simple sampling as a

measure of unreliability, or its reciprocal as a measure of precision—7.

Verification of the theoretical results by experiment—8, More detailed

discussion of the assumptions on which the formula for the standard-

deviation of simple sampling is based—9-10. Biological cases to

sv]|ich the theory is dfrettly applicable—11. Standard-deviation of

simple sampling *vhen the mfmbers of observations in the samples

vary—12. Approximate value of the standard-deviation of simple

sampling, and relation between mean and standard -deviation, when
the chance of success or failure is very small— 13, Use of the standard

-

deviation of simple sampling, or standard error, for checking and
controlling the interpretation of statistical results.

1. On several occasions in the preceding chapters it has been

pointed out that small differences between statistical measures like

percentages, averages, measures of dispersion and so forth cannot

in general be assumed to indicate the action of definite and assign-

able causes. Small differences may easily arise from indefinite

and highly complex causation such as determines the fluctuating

proportions of heads, and tails in tossing a coin, of black balls in

drawing samples from a bag containing a mixture of black and
white balls, or of cards bearing measurements within some given

class-interval in drawing cards, say, from an anthropometric record.

In 100 throws of a coin, for example, we may have noted 56 heads
and only 44 tails, but we cannot conclude that the coin is biassed :

on repeating our throws we may get only 48 heads and 52 tails.

Similarly, If on measuring the statures of 1000 men in each *»i

two nations we find that* the mean stature is slightly greater for
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nation ff than for nation i>, we cannot necessarily conclude that

the rear mean stature is greater in the case of nation A : possibly

if the observations were repeated on# different samples of 1000
men .thevatio might be reversed.

2. The theory of such fluctuations may be termed the theory
of sampling, and there are two chief sections of the theory corre-

sponding to the theory of attributes and the theory of variables

respectively. In tossing a coin we only classify the results of the

tosses as heads or tails
;
in drawing balls from a mixture of black

and white balls, we only classify the balls drawn as black or as

white. These cases correspond to the theory of attributes, and
the general case may be represented as the drawing of a sample
from a universe containing both A’s and a’s, the number or

proportion of A’s in successive samples being observed. If, on the

other hand, we put in a bag a number of cards bearing different

values of some variable X and draw sample batches of carols, we
can form averages and measures of dispersion for the successive

batches, and these averages and measures of dispersion will vary

slightly from one batch to another. If associated measures of

two variables X and Y are recorded on each card, we can also fcfrm

correlation-coefficients for the different batches, and these will vary

in a similar manner. These cases correspond to the theory of

variables, and it is the function of the theory of sampling for such

cases to inform us as to the fluctuations to be expected in the

averages, measures of dispersion* correlation-coefficients, '"'etc., in

successive samples. In the present and the three following

chapters the theory of sampling is dealt with for the case of

attributes alone. The theory is of great importance and interest,

not only from its applications to the checking and control of

statistical results, but also from the theoretical forms of frequency-

distribution to which it leads. Finally, in Chapter XVII. one or

two of the more important cases of the theory of sampling for

variables are briefly treated, the greater part of the theory, owing
to its difficulty, lying somewhat outside the limits of this work.

3. The theory of sampling attains its greatest simplicity if

every observation contributed to the sample may be regarded as

independent of every other. This condition of independence
holds good, e.g., for the tossing of a coin or the throwing of a die :

the result of any one throw or toss does not affect, and is un-

affected by, the results of the preceding and following tosses.

It does not hold good, on the other hand, for the drawing of balls

from a bag : if a ball be drawn from a bag containing 3 black

and 3 white balls, the remainder may be either 2 black and 3

white, or 2 white and 3 black, according as the first ball was
black or white. The result of drawing a second ball is therefore

ft
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dependent on the result of drawing the first. The disturbance

can only be eliminated by. drawing from a bag conforming a

number* of halls that is* infinitely large compared with -the

total number drawn, or by returning each ball to the bag before

drawing the next. In this chapter our attention will be confined

to the case of independent sampling, as in coin-tossing or dice-

throwing—the simplest cases of an artificial kind suitable for

theoretical study and experimental verification. For brevity, we
may refer to such cases of sampling as simple sampling : the

implied conditions are discussed more fully in § 8 below.

4. If we may regard an ideal coin as a uniform, homogeneous
circular disc, there is nothing which can make it tend to fall more
often on the one side than on the other; we may expect, there-

fore, that in any•long series of throws the coin will fall with

either face uppermost an approximately equal number of times,

or with, say, heads uppermost approximately half the times.

Similarly, if we may regard the ideal die as a perfect homogeneous
cube, it will tend, in any long series of throws, to fall with each

of its six faces uppermost an approximately equal number of

tinies, or with any given face uppermost one-sixth of the whole

number of times. These results are sometimes expressed by
saying that the chance of throwing heads (or tails) with a coin is

1/2, and the chance of throwing six (or any other face) with a die

is 1/6. To avoid speaking of such particular instances as coins

or dicef we shall i$ future, losing terms which have become
conventional, refer to an event the chance of success of which is p
and the chance of failure q, Obviously p + q—l.

5. Suppose we take JSf samples with n events in each. What
will be the values towards which the mean and standard-deviation

of the number of successes in a sample will tend ? The mean is

given at once, for there are N.n events, of which approximately
pJVn will be successes, and the mean number of successes in a
sample will therefore tend towards pn. As regards the: standard-

deviation, consider first the single event (w = l). The single

event may give either no successes or 8ne success, and will tend
to give the former g/F, the latter pFy times in F trials. Take
this frequency-distribution and work out the standard-deviation

of the number of successes for the single event, as in the case of

an arithmetical example :

—

Frequency /. Successes /£.

qiY 0 —
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We hav| therefore M— p, and

=p-p2=M-
But the rpimber of successes in a group of n such events is the

sura of successes for the single events of which it is composed,

and, all the events being independent, we have therefore, by the

usual rule for the standard-deviation of the sum of independent
variables (Chap. XI. § 2, equation (2)), <rn being the standard-

deviation of the number of successes in n events,

ai= npq . . . .
. (1)

This is an equation of fundamental importance in the theory of

sampling. The student should particularly bear in mind that

the standard-deviation of the number of successes, due to

fluctuations of simple sampling alone, in a group of n events

varies, not directly as n, but as the square root of n.

6. In lieu of recording the absolute number of successes in each

sample of n events, we might have recorded the proportion of

such successes, i.e. l/wth of the number in each sample. As this

would amount to merely dividing all the figures of the original

record by % the mean proportion of successes—or rather the value

towards which, the mean tends to approach—must be p, and the

standard-deviation of the proportion of successes sn be given by

<=o2/ns -^/» . . .
. (2)

The standard-deviation of the proportion oi*successes in samples

of such independent events varies therefore inversely as the square

root of the number on which the proportion is calculated. Now
if we regard the observed proportion in any one sample as a
more or less unreliable determination of^the true proportion in

a very large sample from the same material, the standard-devia-

tion of sampling may fairly be taken as a measure of the

unreliability of the determination—the greater the standard-

deviation, the greater the fluctuations of the observed proportion,

although the true proportion is the same throughout. The
reciprocal of the standard-deviation ( 1 /s), on the other hand, may
be regarded as a measure of reliability, or, as it is sometimes
termed, precision

,
and consequently the reliability or precision of

an observed proportion varies as the square root of the number of
observations on tohich it is based. This is again a very important
rule with many practical applications, but the limitations of the

case to which it applies, and the exact conditions from which it

has been deduced, should be borne in mind. We return to this

point again below (§ 8 and Chap. XIV.).

7. Experiments in coin tossing, dice throwing, and so forth

have been carried out by various persons®in order to obtain ex-

17
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perimental verification of these results. The following will serve

as illustrations, but the student is strongly recommended to

carry out a few series of sifbh experiments personally, in order to

acquire confidence in the use of the theory. It may tys as well

to remark that if ordinary commercial dice are to be used for the

trials, care should be taken to see that they are fairly true cubes,

and the marks not cut very deeply. Cheap dice are generally

very much out of truth, and if the marks a.re deeply cut the

balance of the die may be sensibly affected. A. convenient mode
of throwing a number of dice, suggested, we believe, by the late

Professor Weldon, is to roll them down an inclined gutter of

corrugated paper, so that they roll across the corrugations.

(1) (W. F. R. Weldon, cited by Professor F. Y. Edgeworth,
Encpd. Brit., 11th edn., vol. xxii. p. 394. Totals of the columns
in the table there given.)

Twelve dice were thrown 4096 times
;
a throw of 4, 5, or 6 points

reckoned a success, therefore p~q^Q‘5. Theoretical mean M= 6

;

theoretical value of the standard-deviation ov, ™ -s/0*5 x 0*5 x 12 =
1-732.

*The following was the frequency-distribution observed :

—

Successes. Frequency. Successes. Frequency.

...

'

• 0 — 7 847
1 7 8 536

• -2 60* • 9 257
3 *198

*
10 71

V: v 4 430 11 11

, -7 V--
' 5 731 12

6 948
® *

1

Total 4096

Mean M~ 6*139, standard-deviation cr= 1*712. The proportion of

successes is 6 *139/12 — 0*512 instead of 0*5.

(2) (W. F. R. Weldon, loc. cit., p. 400. Totals of columns of

the table given.)

Twelve dice were thrown 4096 tin^s
;
only a throw of 6 was

counted a success, so p— 1/6, q — 5/6. Theoretical mean 2,.

standard-deviation <x = /s/l/6 x 5/6 x 12 == 1*291.

The following was the observed frequency-distribution :

—

Successes, Frequency. Successes. Frequency.

0 447 5 115
1 1145 6 24
2 1181 7. 7
3 796 8 1

. 4 380
Total 4096'
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Mean M— 2*000, standard-deviation <r ~ 1*296. Actual proportion

of successes 2*00/12 - 0*1667, agreeing with the theoretical value

to the. fourth place of decimals. Of course such very close

agreement is accidental, and not to be always expected.

(3) (G. U. Yule.) The following may be taken as an illustra-

tion based on a smaller number of observations. Three dice were

thrown 648 times, and the numbers of 5’s or 6 J

s noted at

each throw. p- 1/3, q
— 2/3. Theoretical mean 1. Standard-

deviation, 0*816.

Frequency-distribution observed :

—

Successes.

0
1

2

3

Total 648

M= 1*034, cr = 0*823. Actual proportion of successes 0*345. *

For other illustrations, some of which are cited in the questions

at the end of this chapter, the student maybe referred to the

list of references on p. 273. The student should notice that in

all the distributions given a range of six times the standard-

deviation includes either all, or thg great bul^: of, the observations,

as in most frequency-distributions of the. same general form. We
shall make use of this rule below, § 13.

8. In deducing the formulae (1) and (2) for the standard-

deviations of simple sampling in the cases with which we have
been dealing, only one condition has been explicitly laid down as

necessary, viz. the independence of the several drawings, tossings,

or other events composing the sample. But in point of fact this

is not the only nor the most fundamental condition which has

been explicitly or implicitly assumed, and it is necessary to realise

all the conditions in orde? to grasp the limitations under which
alone the formulae arrived at will hold. Supposing, for example,

that we observe among groups of 1000 persons, at different times

or in different localities, various percentages of individuals

possessing certain characteristics—dark hair, or blindness, or

insanity, and so forth. Under what conditions should we
expect the observed percentages to obey the law of sampling
that we have found, and show a standard-deviation given by
equation (2) ?

Ja) In the first place we have tacitly assumed throughout the
preceding work that our dice or our couis were the same set or

Frequency.

179

298

141

30
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identically similar throughout the experiment, so that themhance

of throwing “-heads” with the coins or, say, “six” with the dice

was the same throughout: we did not commence an experiment

with dice loaded in one way and later on take a fresh s£t of dice

loaded in another way. Consequently if formula (2) is to hold

good in our practical case of sampling there must not be a

difference in any essential respect

—

i.e. in any character that can

affect the proportion observed—-between the localities from which

the observations are drawn, nor, if the observations have been

made at different epochs, must any essential change have taken

place during the period over which the observations are spread.

Where the causation of the character observed is more or less

unknown, it may, of course, be difficult or impossible to say what
?;

differences or changes are to be regarded as essential, but, where

we have ’more knowledge, the condition laid down enables us to -

exclude certain cases at once from the possible applications of

formula (1) or (2). Thus it is. obvious that the theory of simple

sampling cannot apply to the variations of the death-rate in

localities with populations of different age and sex compositions,

nor to death-rates in a mixture of healthy and unhealthy districts,

nor to death-rates in successive years during a period of con-

tinuously improving sanitation. In all such cases variations

due to definite causes are superposed on the fluctuations of

sampling. • •

(b) In the second* place, we* have also tacitly .assumed not

only that we were using the same set of coins or dice throughout,

so that the chances p and q were the same at every trial, but

also that all the coins and dice in the set used were identically

similar, so that the chances p and q were the same for every coin

or die. Consequently, if our formulae are to apply in the practical

case of sampling, the conditions that regulate the appearance of

the character observed must not only be the same for every

sample, but also for every individual in every sample. This is

again a very marked limitation. To revert to the case of death-

rates, formulae (1) and (2) would not apply to the numbers of

persons dying in a series of samples of 1000 persons, even if these

samples were all of the same age and sex composition, and living

under the same sanitary conditions, unless, further, each sample
only contained persons of one sex and one age. For if each
sample included persons of both sexes and different ages, the
condition would be broken, the chance of death during a given
period not being the same for the two sexes, nor for the young
and the old. The groups would not be homogeneous in the sense
required by the conditions from which our formulae have bean
deduced. Similarly, if We were observing hair-colours, our formulae
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;

would |iiot apply if the samples were compounded by always

taking one person from district ^ another from district B, and
so on, these districts not being similar as regards the distribution

of hair-colour.

The above conditions were only tacitly assumed in our previous

work, and consequently it has been necessary to emphasise them
specially. The third condition was explicitly stated

:
(c) The

individual “ events,” or appearances of the character observed,

must be completely independent of one another, like the throws

of a die, or sensibly so, like the drawings of balls from a bag
containing a number of balls that is very large compared with

the number drawn. Beverting to the illustration of a death-rate,

our formulae would not apply even if the sample populations

were composed of persons of one age and one sex, if we were

dealing, for example, with deaths from an infectious or contagious

disease. For if one person in a certain sample has contracted

the disease in question, he has increased the possibility of others

doing so, and hence of dying from the disease. The same thing

holds good for certain classes of deaths from accident, e.g. railway

accidents due to derailment, and explosions in mines : if 'such an
accident is fatal to one person it is probably fatab to others also,

and consequently the annual returns show large and more or

less erratic variations.

When we speak of simple sampling m the following p^ges, the

term is intended to imply the fulfilment of a&l the conditions (a),

(

b

), and (c), all the samples and all the individual contributions to

each sample being taken under precisely the same conditions,

and the individual u events ” or appearances of the character being

quite independent. It may be as well expressly to note that we
need not make any assumption as to the conditions that determine

p unless we have to estimate Jnpq a priori. If we draw a
sample and observe in it the actual proportion of, say. A’s:

draw another sample under precisely the same conditions, and
observe the proportion of 4 ?s in the two samples together: add
to these a third sample, and so on, we will find that p approaches
.—not continuously, but with some fluctuations—closer and closer

to some limiting value. It is this limiting value which is to be
used in our formulae—the value of p that would be observed in

a very large sample. The standard-deviation of the number of

sixes thrown with n dice, on this understanding, may be Jnpcj}
even if the dice be out of truth or loaded so that p is no longer

1/6. Similarly, the standard-deviation of the number of black

balls in samples of n drawn from an infinitely large mixture of

b*<fek and white balls in equal proportions may be Jnpq even
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if p is, say, 1/3, and not 1/2 owing to the black balls, fjpr some

reason, tending to slip tlyttugh our fingers. (Cf. Chap. XIV.

§ 4 .)

9. It is evident that these conditions very much 'limit the

field of practical cases of an economic or sociological character

to which formulae (1) and (2) can apply without considerable

modification. The formulas appear, however, to hold to a high

degree of approximation in certain biological cases, notably in

the proportions of offspring of different types obtained on crossing

hybrids, and, with some limitations, to the proportions of the

two sexes at birth. It is possible, accordingly, that in these cases

all the necessary conditions are fulfilled, but this is not a necessary

inference from the mere applicability of the formulae (c/. Chap.

XIV. § 15). In the case of the sex-ratio at birth, it seems

doubtful whether the rule applies to the frequency of the sexes in

individual families of given numbers (ref. 9), but it does apply

fairly closely to the sex-ratios of births in different localities,

and still more closely to the ratios in one locality during

successive periods. That is to say, if we note the number of

males in a series of groups of n births each, the standard-deviation

of that number is approximately *Jnpq, where p is the chance

of a male birth • or, otherwise, Jpq/n is the standard-deviation

of the proportion of male births. We are not able to assign an

a prior* value to the cMr&e p as in the case of dice-throwing,

but it is quite sufficiently accurate for practical purposes to use

the proportion of male births actually observed if that proportion

be based on a moderately large number of observations.

10. In Table VI. of Chap. IX. (p. 163) was given a correlation-

table between the total lumbers of births in the registrationdistricts

of England and Wales during the decade 1881-90 and the pro-

portion of male births. The table below gives some similar figures,

based on the same data, for a few isolated groups of districts con-

taining not less than 30 to 40 districts each. In both tables the

drop in dispersion as we pass from th^ small to the large districts

is extremely striking. The actual standard-deviations, and the

standard-deviations of simple sampling corresponding to the mid-
numbers of births, are given at the foot of the table, and it will

be seen that the two agree, on the whole, with surprising closeness,

considering the small numbers of observations. The actual

standard-deviation is, however, the larger of the two in every case

but one. The corresponding standard-deviations for Table VI. of

Chap. IX. are given in Qu. 7 at the end of this chapter, and show
the same general agreement with the standard-deviations of simple
sampling ; the actual standard-deviations are, however, again? as

a rule, slightly in excess of the theoretical values. -
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Table showing Frequencies of Registration districts in England and Wales with

Different Ratios of Male to Total Birthls during the Decade 1881-90, for
Groups of Districts with the Numbers of Births in the Decade lying between

Certain Limits. [Data based on Decennial Supplement to Fifty-fifthAnnual
Report of the Registrar-Generalfor England and Wales.']

Number of Births in Decade.

Male Births

per Thousand
Total Births.

1500
to

3500
to

4500
to

10,000
to

15,000
to

30,000
to

50,000
to

2500. 4000. 5000. 15,000. 20,000. 50,000. 90,000.

466-67 1 — — — -» —
.

—
COiC-lCO

-'tf 1 — — — —
!*

—

492- 3 1 1
—

. .

494- 5 1 — 1 —
:

— — —
496- 7 2 3 — — — __

498- 9 — 1 — -— - — 1’ m

500- 1 2 4 2 1 — —
.

502- 3 3 3 3 3 — —
504- 5 3 1 3 10 4 4 6

506- 7 5 5 3 6 6 6 10
5OS- 9 — 3 3 9 4 16 12
510- 1 4 3 .9

* v
15 5 5

512- 3 1 5 * 2 8
*

9 4 2
514- 5 2 2 3 10

|

2 3 —
516- 7 — 3 3 ' 5

!

;

2
'

' 1 _
518- 9 4 3 4

|

— — —
520- 1 1 —

.

1 — "
I'-./' — — .

522-3 2 1 3 *1 .
.

—
524- 5 1 2 _ .

:

— —
526- 7 1 1 1 — -

—

—,

528- 9 ;
—

—

— — — —
530- 1 — 1 — —

|

— —
532- 3 — — .

;

: — — — .

534- 5 — — • — — —
536- 7 1 — — — — —

Total 36
1

38 40 73 33 43 35
Mean

!

508*2 509*5 510*2 510*6 510*3 509*0 507*8
(Standard deviations

|

Tlieo. st, deviation^

12*8 i 8*53 7*12 4*98 3*87 3*22
.

2*20

corresponding to i

mean births s0J

11*2 1 8*16 7*25 4*4 7 - 3 *78 2*50 1*89

V'S"
1 — s0

“ * 6*2 2*5 — 2*2 0*8 • 2*0 1*1

* The meaning of this expression is explained in § 10 of Chap, XIV.
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The student should note that in both cases the standard-devia-

tions given are standard-deviations of the proportion of male

births per 1000 of all birth$ that is, 1000 times the values given

by equation (2). These values are given by simply substituting

the proportions per 1000 for p and q in the formula. Thus for

the first column of Table I. the proportion of males is 508 per

1000 births, the mid-number of births 2000, and therefore

—

/50
s
o
= 508 x

492

Y

2000 )
= 11

*

2 .

11. In the above illustration the difficulty due to the wide

variation in the number of births n in different districts has been

surmounted by grouping these districts in limited class intervals,

and assuming that it would be sufficiently accurate for practical

purposes to treat all the districts in one class as if the sex-ratios

had bdfen based on the mid-numbers of births. Given a sufficiently

large number of observations, such a process does well enough,

though it is not very good. But if the number of observations

dom not exceed, perhaps, 50 or 60 altogether, grouping is

obviously out of the question, and some other procedure must be

adopted.

Suppose, then, that a series of samples have been taken from

the same material, fx
samples containing n

x
individuals or observa-

tions ea#h, f2 containing /3
containing n

z ,
and so on : What

would be the standard-deviation of the observed proportions in

these samples'! Evidently the square of the standard-deviation

in the first group would be pqjnv in the secondpq/n2,
and so on :

therefore, as the means tend to the same values in all the groups,

we must have for the wSole series

—

+-2 +;^ +
H/<) Wq

' But if II be the harmonic mean of n
x

ns

and accordingly

|= /1+ /2+ /8+
11 n

x n>
2

?i
3

(3)

That is to say, where the number of observations varies from one
sample to another, the harmonic mean number of observations in

a sample must be substituted for n in equation (2).

Thus the following percentages (taken to the nearest unit)*
#
of
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albinos were obtained in 121 litters from hybrids of Japanese

waltzing mice by albinos, crossed, Crater se (A. D. Darbishire,

Biometrika
,

iii. p. 30):— n

Percentage.

0
14

17

20
22

25

29

33

Frequency.

40
4

9

9

1

10

3

13

Percentage.

40
43

50
57

60
67

80
100

Frequency.

i 3

2

16

1

3

4

1

9

The distribution is very irregular owing to the small numbers in

the litters, and the standard-deviation is 23*09 per cent. The
numbers of litters of different sizes were given in § 27 of> Chap.

VII. p. 128, and the harmonic mean size of litter was found to be

3*53. The expected proportion of albinos is 25. per cent., and
hence the standard-deviation of sampling is ^

/25 x 75V
\ 3*53 )

=
- 23-05,

in very close agreement with the actual value. The proportion

of albinos amongst all the offspring together was 24*7 pe^ cent.

12. If one of the two proport?ons p andA^ become very small,

equation (1) may be put into an approximate form that is very

useful. Suppose p to be the proportion that becomes very small,

so that we may neglect p2 compared with p : then

pq — p-p^—p approximately,

and consequently we have approximately

<rn— Jn.p = JM .... (4)

That is to say, if th$ proportion of successes be small, the

standard-deviation of the number of successes is the square root of
the mean number of successes. Hence we can find the standard-

deviation of sampling even though p be unknown, provided only

we know that it is small.

Thus (ref. 15) in 10 Prussian army corps in 20 years (1875-

1894) there were 122 men killed by the kick of a horse, or, on an

average, there were 0-61 deaths from that cause in each army
corps annually. From equation (4) we accordingly have for the

standard-deviation of simple sampling

<r = (0-61)* = 0*78.
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The frequency-distribution of

corps per annum was #

Deaths.

O'

1

2

3

4

whence
o-
2 =

cr-

the number of deaths pe^r army

Frequency.

109

65

22

3

1

0*6079

0*78

—an almost exact agreement with the standard-deviation of simple

sampling.

13. W

e

may now turn from these verifications of the theoretical

results for various special cases, to the use of the formulae for

checking and controlling the interpretation of statistical results.

If we observe, in a statistical sample, a certain proportion of

objects or individuals possessing some given character— say A’s

—

this proportion differing more or less from the proportion which

for some reason we expected, the question always arises whether

the difference may be due to the fluctuations of simple sampling

only, or may be indicative of definite differences between the

conditions in the universe from $vhich the sample has been drawn
and the assumed conditions on which we based our expectation.

Similarly, if we observe a different proportion in one sample from

that which we have observed in another, the question again arises

whether this difference may be due to fluctuations of simple

sampling alone, or whether it indicates a difference between the

conditions subsisting in the universes from which the two samples

were drawn : in the latter case the difference is often said to be
significant. These questions can be answered, though only more
or less roughly at present, by comparing the observed difference

with the standard-deviation of simple sampling. We know
roughly that the great bulk at least of the fluctuations of samp-
ling lie within a range of ± three times the standard-deviation

;

and if an observed difference from a theoretical result greatly

exceeds these limits it cannot he ascribed to a fluctuation of
“ simple sampling as defined in § 8 : it may therefore be signifi-

cant. The a standard-deviation of simple sampling being the

basis of all such work, it is convenient to refer to it by a shorter

name. The observed proportions of A’s "in given samples being
regarded as differing by larger or smaller errors from the true
proportion in a very large sample from the same material, the
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“ standard-deviation of simple sampling ” maybe regarded as a

measure of the magnitude of such errors, and may be called ac-

cordingly the standard error,
5

Three’principal cases of comparison may be distinguished.

Case L—It is desired to know whether the deviation of a certain

observed number or proportion from an expected theoretical value

is possibly due to errors of sampling.

In this case the observed difference is to be compared with the

standard error of the theoretical number or proportion, for the

number of observations contained, in the sample.

Example i.—In the first illustration of § 7, 25,145 throws of a 4,

5, or 6 were made in lieu of the 24,576 expected (out of 49,152
throws altogether). The excess is 569 throws. Is this excess

possibly due to mere fluctuations of sampling T
The standard error is

<r = Jl X I x 49152

= 110-9.

The deviation observed is 5*1 times the standard error, ^nd,

practically speaking, could not occur as a fluctuation of simple

sampling. It may perhaps indicate a slight bias in the dice.

The problem might, of course, have been attacked equally well

from the standpoint of the proportion in lieu of the absolute

number of 4’s, 5
J

s, or 6’s thrown. This proportion is G'5 1 1^6 instead

of the theoretical 0*5000, difference in ’excess 0*0116. The
standard error of the proportion is

m“i-OTa—»°°226
'

and the difference observed bears the same ratio to the standard

error as before, as of course it must.

Example ii.—(Data from the Second Report of the Evolution

Committee of the Royal Society
, 1905, p. 72.)

Certain crosses of Pisitin sativum gave 5321 yellow and 1804
green seeds. The expectation is 25 per cent, of green seeds, or

1781. Can the divergence from the exact theoretical result have

arisen owing to errors of sampling only *?

The numerical difference from the expected result is 23. The
standard error is

cr= JoWZoWJPfm « 36*8.

Hence the divergence from theory is. only some 3/5 of the

standard error, and may very well have arisen owing simply to

fluctuations of sampling.
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I

Working from the observed proportion of green seeds, viz. 0*2532

instead of the theoretical 0 *

25 ,
we have

s — VO ;25 x 0-75/7l25= 0-0051,

and similarly the divergence from theory is only some 3/5 of the

standard error, as before.

It should be noted that this method must not be used as a test

of association by comparing the difference of (AB) from (A)(B)/JV

with a standard error calculated from the latter value as a

“theoretical number,” for it is not a theoretical number given

a priori as in the above illustrations, and A and B are themselves

liable to errors of sampling. If we formed an association-table

between the results of tossing two coins N times, cr= JJSf. J. f
would he the standard error for the divergence of (AB) from the

a priori value nj4, not the standard error for differences of (AB)
from (4)(B)jN,

(A) and (B) being the numbers of heads thrown
in the case of the first and the second coin respectively.

Case II.—Two samples from distinct materials or different

universes give proportions of A ’s pl
and p^ the numbers of

observations in the samples being nx and n2
respectively, (a) Can

the difference between the two proportions have arisen merely as a

fluctuation of simple sampling, the two universes being really

similar as regards the proportion of A’s therein 3 (b) If the

difference indicated were % seal one, might it vanish, owing to

fluctuations of sampling, in othe* samples taken in precisely the

same way 1 This case corresponds to the testing of an association

which is indicated by a comparison of the proportion of iks amongst
By

s and /Ts.

(a) We have no theoi^tieal expectation in this ease as to the

proportion of 4’s in the universe from which either sample has

been taken.

Let us find, however, whether the observed difference between p l

and p2
may not have arisen solely as a fluctuation of simple

sampling, the proportion of J.’s being really the same in both cases,

and given, let us say, by the (weightea) mean proportion in our

two samples together, i.e. by

__n^+n
2p2

Po n;+n
2

(the best guide that we have).

Let €
x
e
2
be the standard errors in the two samples, then

If the samples are simple samples in the sense of the previous
work, then the mean difference between px

and p2
will be zero,
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1 ' n

and thg standard error of the difference e12,
the samples being

independent, will be given by

ci2—-JMol

•3

(i + i)
\«i:

(5)

If the observed difference is less than some three times e
L2

it

may have arisen as a fluctuation of simple sampling only.

(b) If, on the other hand, the proportions of A >
s are not the same

in the material from which the two samples are drawn, but p1
and

p2
are the true values of the proportions, the standard errors of

sampling in the two cases are

and consequently

=Pi(h/ni -pdtehn

n
x % (

6
)

If the difference between px
and p2

does not exceed some three

times this value of e
12 ,

it may Jbe obliterated by an error of simple

sampling on taking fresh samples in the same way from the same
material.

Further, the student should note that the value of e12
given by

equation (6) is frequently employed, in lieu of that given by
equation (5), for testing the significance of an observed difference.

The justification of this usage we kicUcate briefly later (Chap.

XIY, § 3). Here it is sufficient to state* that, if n be large,

equation (6) gives approximately the standard-deviation of the

true values of the difference for a given observed value, and hence,

if the observed difference is greater or less than some three times

the value of en given by (6), it is hardly possible that the true

value of the difference can he zero. The difference between the
* values of <=

12
given by (5) and (6) is indeed, as a rule, of more

theoretical than practical importance, for they do not differ largely

unless px
and differ largely, and in that case either formula will

place the difference outside the range of fluctuations of sampling.

Example iii.—The following data were given in Qu. 3 of Chap.

III. for plants of'Lobelia fulgens obtained by cross- and self-fertilisa-

tion respectively:

—

Parentage Cross-fertilised.

Height-
Above Average, below Average.

17
'

17

The figures indicate an association between tallness and cross-

fertilisation of parentage. Is this association significant of some
real difference, or may it have arisen ^solely as an “ error of

Parentage Self- fertilised.

Height-
Above Average. Below Average.

12 * 22
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sampling ” % The proportion of plants above average height in the

two classes (cross- and sel^fertilised) together is 29/G8C The
standard-deviation of the •differences due to simple sampling

between the proportions of “ tall ” plants in two samples of 34

observations each is therefore

29 39 r
68

X
68

X
34

= 0 -120
,

or 12*0 per cent. The actual proportions observed are 50 per

cent, and 35 per cent.—difference 15 per cent. As this difference

is only slightly in excess of the standard error of the difference,

for samples of 34 observations drawn from identical material, no

definite significance could be attached to it—if it stood alone.

The student will«notice, however, that all the other cases cited

from Darwin in the question referred to show an association of

the same sign, but rather more marked. Hence the difference

observed may be a real one, or perhaps the real difference may be

greater and may be partially masked by a fluctuation of sampling.

If 50 per cent, and 35 per cent, were the true proportions in the

twd classes, the standard error of the percentage difference would

be, by equation (6),

50x50 35x65'

. 34
+

34
.)
= 11 '9 per cent.,

and consequently the actual difference might not infrequently be

completely masked by*fluctuations of sampling, so long as experi-

ments were only conducted on the same small scale.

Example iv.—(Data from J. Gray, Memoir on the Pigmentation

Survey of Scotland, Jour, of the Royal Anthropological Institute,

vol. xxxvii., 1907.) Tht following are extracted from the tables

relating to hair-colour of girls at Edinburgh and Glasgow

Edinburgh
Glasgow

Of Medium
Hair-colour.

4,008

17,529

Total

observed.

9,743

39,764

Per cent.

Medium.

Can the difference observed in the percentage of girls of medium
hair-colour have arisen solely through fluctuations of sampling?

In the two towns together the percentage of girls with medium
hair-colour is 43*5 per cent. If this were the true percentage,

the standard error of sampling for the difference between per-

centages observed in samples of the above sizes would be-—

£l2 = (43-5x56^xf54 + g^y
= 0*56«per cent.
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The actuM difference is 3*0 per cent., or over 5 times this, and
could rft>t have arisen through the chances of simple sampling.

If we assume that the difference is% real one and calculate the

standard^error by equation (6), we arrive at the same value, viz.

0*56 per cent. With such large samples the difference could not,

accordingly, be obliterated by the fluctuations of simple sampling

.alone.
^

«

Case III.—Two samples are drawn from distinct material or

different universes, as in the last case, giving proportions of
A’s p1

and p29 but in lieu of comparing the proportion p 1
with

p2
it is compared with the proportion of A’s in the two samples

together, viz, pQ,
where, as before,

Po “
!HP1±^2P2

Required to find whether the difference between px
and^ can

have arisen as a fluctuation of simple sampling, p0
being the

true proportion of A’s in both samples.

This case corresponds to the testing of an association which

is indicated by a comparison of the proportion of A’s amongst
the jS’s with the proportion of A’s in the universe. The general

treatment is similar to that of Case II., but the work is complicated

owing to the fact that errors in px
and p0

are not independent.

If e
01

be the standard error of tl^e ^difference between px
and

pQ}
we have at once n *

e01 " e
0 + €1

*“ %roi • <=
0
€
1

=Mo \nl
• 2rn -

n
i +% n

i
" 01

r
01

being the correlation between errors of simple sampling in

pl
and p0

. But, from the above equation relating p0 to px

and p2 ,
writing it in terms of deviations in p0 p x

and p2 ,

multiplying by the deviation in p1
and summing, we have,

since errors in px
and p2

a?e uncorrelated,

Therefore finally

n
i + n2 c

o

Mo

v Jh_
n, + nt'

2

€01 —

•

n
x + n» n

x
(
1 )

Unless the difference between p0
and pl

exceed, say, some
three times this value of c

01,
it may have arisen solely by the

chances of simple sampling.
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It will be observed that if n
1

be very small compared with

n
9J €0i approaches, as it -should, the standard error for a Sample

of Tij observations. r

We omit, in this case, the allied problem whether if the

difference between px
and p0

indicated by the samples were

real, it might be wiped out in other samples of the same size

by rfluctuations of simple sampling alone. The solution is a

little complex as we no longer have 4—PQ2ol(ni + %)*
Example v.—Taking the data of Example iii., suppose that

we compare the proportion of tall plants amongst the offspring

resulting from cross-fertilisations (viz. 50 per cent.) with the

proportion amongst all offspring (viz. 29/68, or 42*6 per cent).

As, in this case, both the subsamples have the same number
of observations, n

x
u n

2= 34, and
~
/29 39 1 V p. AfiA

e
f01 “ \68 * 68

X
68/

°'0b0

or 6 per cent. As in the working of Example iii., the observed dif-

ference is only 1*25 times the standard error of the difference, and
consequently it may have arisen as a mere fluctuation of sampling.

Example vi.—Taking now the figures of Example iv., suppose

that we had compared the proportion of girls of medium hair-

colour in Edinburgh with the proportion in Glasgow and
Edinburgh together. The former is 41*1 per cent., the latter

43*5 per cent., difference ^'4 pgr cent. The standard error of

the difference between the percentages observed in the sub-

sample of 9743 observations and the entire sample of 49,507

observations is therefore

e
01 = (43'5 x 0-45 per cent.

The actual difference is over five times this (the ratio must, of

course, be the same as in Example iv.), and could not have occurred
as a mere error of sampling.
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• . EXERCISES.

I. (Ref. 4: total of columns mall tlie 13 rubles given.)

Compare tlie actual with tin theoretical ;meun and 'standard-devia:

the roll >w ag i >" t of 6500 throws of 12 die
, 4, 5, or 6 herng r<

as a
;£
success/

5

.Successes/' Frequency.
j

Successes. - Frequency,

’
0 l/ 1 7 1351

1281 12 8

6 1411 —

-

Total 6500

2. (R/. 1.)

Ralls were drawn from a bag containing equal numbers of black and white
balls, each ball being returned before drawing another. The. records were then

grouped by counting the number of black ’balls in consecutive 2’s, &% 4% 5’k,

etc. The following give the distributions so derived for grouping by 5*s, 6’s,

and 7’s. Compare actual with theoretical means and standard- deviations, y

(a) Grouping
by Fives.

(c) Grouping
by Sevens"

(&) Grouping
by Sixes.

Successes.

Ten Ms c i igs fa b 11 from i bag containing equal numbers ,1

black and. white were made in the same manner as in the preceding example,
and then grouped inr - !<>0 srls of 1 U0 The following gives Use iv/il/ng
frequency of iiiilbmir. numbers of white bails.- Com] rare mean md standard
deviation with theory,

Humber. Frequency.
|

Humber, Frequency.
|

Humber. Frequency, -
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4. The proportion of successes in the data of Qu. 1 is 0*5097. Find the stand-

ard-de villion uf the proportion with the given number of throws, and stale

whether yon would regard the excess of sneezes as probably significant of bias

i- Do diet. i

5. In tl3b 4096 drawings on which Qu. 2 is' based *2030 balls were black

and 2066 white. Is tins divergence probably significant of bias?

6. If a frequency-distribution such as those of Questions I, 2, and 3 be given,

show how % and p, if unknown, maybe approximately determined from
a
the

mean and standard-deviation of the distribution.

- Find n and p in this way from the data of Qu. I and Qu. 3.

7. Verify the following results for Table VI. of Chapter IX. p. 163, and
compare the results of the different grouping of the table on p. 263. In

calculating the actual standard -deviation, use Sheppard’s correction for

grouping (p. 212).

Row or Rows,. Mean.
Actual

Standard-
deviation s.

% Standard-
deviation *

of Sampling s0.

Vl/Au: T

i 508*2 11-60 11*18

2 509*5 6*79. 6*45
3

'

' 510*0 -5*28 ' 5*00

4 511

T

5*03 4*22 .

.5 510*2 3*67 3*73

6, 7 : 509*7 4*13 3*24

8, 9, 10, 11
1 508*7 3*10 * 2*69

12, 13, 14

15 and upwards.

508*4 2*55 2*25'

508*2 *2413

» *

1*85
.. *

8.

In a case of mice-breeding (see reference given - in §11) the harmonic
rmean number in a litter was 4*735, and the expected proportion of albinos

50 per cent. Find the standard-deviation of simple sampling for the pro-

portion of albinos in a litter, and state whether the actual standard -deviation

(21*63 per cent.) probably indicates any real variation, or not.

„ 9. (Data from Report i., Evolution Committee of the Royal Society, p. 17.)

In breeding certain stocks 408 hairy and 126 glabrous plants were obtained.

If the expectation is one-fourth glabrous, is the divergence significant, or might
it have occurred as a fluctuation of sampling ?

,

10. (Data of Example viri. and Qu. 5, Chap. III.) Is the association in

- either of the following cases likely to have arisen as a fluctuation of simple
sampling?

(a) (AB)^ 47 (.<4/8} = 1*2 {«;?) = 21 (a/3) = 3

\0) (J //'. - 309 (-4/3) = 21 -I (aZi) = 132 (a/3)= 1 19

11. The sex-ratio at birth is sometimes given by the ratio of male to female

births, instead of the proportion of male to total births. If Z is the ratio,, i. e.

Z^pjq^ show that the standard error of Z is approximately (1 +Z)\f?,
' /?

n being large, so that deviations are small compared with the mean. (The
'-

1'
1

. .

1 id it useful to refer to § 8, Chap XI.)

harmonic mean of the raid-values for groups of rows.



CHAPTER XIV

v.. SIMPLE SAMPLING CONTINUED; EFFECT OF. ^
REMOVING THE LIMITATIONS OF SIMPLE SAMPLING.

1, Warning as to the. assumption that three times the standard error gives the

range for the majority of fluctuations of simple sampling of either sign

—2, Warning as to the use of the observed for the true value of p in

the formula for the standard error—3. The inverse standard error, or

standard error of the true proportion for a given observed proportion :

c equivalence of the direct and inverse standard' errors when n is large—
4-8. The importance of errors other than fluctuations of “simple
sampling” in practice: unrepresentative or biassed samples—9-10.

Effect of divergences from the conditions of simple sampling: (a)

effect of variation in p and q for the several universes from which the

samples are drawn—il—12- (b) Effect of variation in p and q from one

sgb-class to another within each universe—13-14. (c) Effect of a

correlation between the resultsof the several events—15. Summary,

1. There are two warnings as regards the methods adopted in

the examples in the concluding section of the last chapter

which, the student should note, as they may become of importance
when the number of observations is small. In the first place, he
should remember that, while we have taken three times the

'

standard error as giving the limits within which the great

majority of errors of sampling of either sign are contained,

the limits are not, as a rule, strictly the same for positive and
for negative errors. As is evident froha the examples of actual

distributions in § 7, Chap. XIII., the distribution of errors is not
strictly symmetrical unless p= q =* 0*5. No theoretical rule as

to the limits can be given, but it appears from the examples
referred to and from the calculated distributions in Chap. XV,

§ 3, that a range of three times the standard error includes

the great majority of the deviations in the direction of the
longer “.tail” of the distribution, while the same range on the
shorfcei side may extend beyond the limits of the distribution

,
altogether. If, therefore, p be less than 0%5, our assumed range
may be greater than possible for negative errors, or if p be

r ^ a ljjjr
r/
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" §# .

'

l

'

?
; pV ‘

p'Ipf
:

;;VplVp|l

'27?:

:p "5,
. -greater". than: is possihlefor positive errors: •;

1TheIk:

,
assumption is not, however, likely a* a rule to lead to a serious

mistake ; as stated at the commencement of. this paragraph, the

point is erf importance only when n is small, for when-n is large the

distribution tends to become sensibly symmetrical even for values

-of j) differing considerably from 0*5. (Of, Chap. XV. for the

properties of the limiting form of distribution.) -

2. In the second place, the student should note that, where, we
were unable to assign any a priori value to p i

we have assumed
that it is sufficiently accurate to replace p in the formula for the

standard error by the proportion actually observed, say tr.

Where n is large so that the standard error of p becomes small

relatively to the product pq the assumption is, justifiable, and no
serious error is possible. If, however, n be small, the use of the

observed value tt may lead to an under- or over-estimation of the

standard error which cannot be neglected. To get some*rough
idea of the possible importance of such effects, the approximate
standard error e may first be calculated as usual from the

observed proportion ir, and then fresh values recalculated, replac-

ing tr bv tr + ?>e. It should be remembered that the maximum
value of the product pq is given by p~q~ 0*5, and hence these

values, if within the limits of fluctuations of sampling," will give

one limiting value for the standard error. The procedure is by
no means- exact, but may serve to giv-e a useful warning. %

Thus in Example iii. of Chap. XIII. the observed proportion of

tall plants is 29/68, or, say, 43 per cent. The standard error of

this proportion is 6 per cent., and a true proportion of 50 per

cent, is therefore well within the limits of fluctuations of sampling.

The maximum value of the standard erro% is therefore

*
:

''
. /50 x50V , AP *

'

!VV38 j
=5*06 per cent.

On the other hand, the standard error is unlikely to be lower

than that based on a proportion of 43 ~ 18 = 25 per cent.,

/2ffx 75y
V 68

>\p
'

V = 5*25 per cent.

bff/iVThe. two difficulties; mentioned in |§; 1 and 2 afise when
the i bei of cases in the sample, is small. The interpretation

>f the value of the standard error is also more limited in this

case than when u is large.
„
Suppose a largo ‘number of' observa-

tions to be made, by means of samples of n observations each, on
different masses of material, or in different universes, for each of

which the true value of p is known. (In those data we could
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form a correlation-table between the true';proportion p in a given

universe and the observed proportion rr In a sample of n observa-

tions drawn therefrom. What; we have found from the work of

the last chapter is that .'the^ standard-deviation of' an arfay of tt
?

s

associated with a certain "true value p, in this: table, is (pq/n)*

;

but the question may be asked—What is the standard-deviation

of the array at right angles to this, i.e% the array of p *s associated

with a certain observed proportion 7r? In other words, given an

observed proportion tt, what is the standard-deviation of the true
’

proportions'? This is the inverse of the problem with which we .

have been dealing, and it is a much more difficult problem.

On general principles, however, we can see that if n be large,

the two standard-deviations will tend, on the average of all

values olp, to be nearly the same, while if n be small the standard-

deviation of the array of ws will tend to be appreciably the

greater of the two. For if -ir~p *f 3, 8 is uncorrelated with p}
m

and therefore if crp be the standard-deviation of p in all the11

universes from which samples are drawn, <r~ the str
1 rd

deviation of observed proportions in the samples, and as the,

standard-deviation of the differences,

A=S + ° 6-

But cr| varies Inversely as n. Hence if n become very 0*5

becomes very small,, ay bopQines sensibly equal to and l^^fore
the standard-deviations of the ^arrays, on an average, are ’also

sensibly equal. If n be large, therefore, Mi - Tr)jnf may be

taken as giving, with sufficient exactness, the standard-deviation

of the true proportion p for a given observed proportion 7r. But
if n be small, </<$ cannot^be neglected in comparison with crpi ov is

therefore appreciably greater than oy, and the standard-deviation

of the array of tt
j

s is, on an average of all arrays
,
correspondingly*

greater than the standard deviation of the array of yks—ihe state-

ment is not true for every pair of corresponding arrays, especially

for extreme values of p near 0 and 1. Further, it should be
noticed that, while the regression of*w on p is unity

—

i.e. the

mean of the array of tFs is identical with p, the type of the .

array—the regression of p on ir is less than unity. If we as™

sume, therefore, that a tabulation of all possible chances, observed
‘ for every conceivable subject,, would give a distribution of p-

ranging uniformly between 0 and 1, or indeed grouped symmetri-
' cally in any way round 05, any observed value 7r greater than
0*5 will probably correspond to a true value of p slightly lower
than 7r, and conversely. We have already referred to the use of

• the inverse standard error in § 13 of Chap. XIII. (Case II, p. 2%D).

If we determine, for example, the standard error of the difference'

,

Hi;
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; $'
: :

t
% . .

;

'h" / W
bet reeii $ r< observe I pro} addons by equati* i (6) of that ( h pter,

im- >a\ bo rake , rodet-d n bo large, as a; nr ximat j!

y the

standard-deviation of true differences for the given observed

'A- -p ' ;"Vk ;

'
:

7;k yh
4. The use of standard errors must be exercised with care. It

is very necessary to remember the limited- assumptions on which

the theory of simple sampling is based, and to bear in mind that

it covers those fluctuations alone which exist when all the assumed
conditions are fulfilled. The formnke obtained for the standard

errors of proportions and of their differences have no -bearing

except on the one question, whether an observed divergence of a

certain proportion from a certain other proportion that might be

observed in a more extended series of observations, or that has

actually been observed in some other series, might or might not

be due to fluctuations of simple sampling alone. Their use is

thus quite restricted, for in many cases of practical sampling this

is not the principal question at issue. The- principal question in

many such cases concerns quite a different point, viz. whether the

observed proportion w in the sample may not diverge from the

proportion p existing in the universe from which it was drawn,

owing to the nature of the conditions under which the sample was
taken, tt tending to be definitely greater or definitely less than.

p.
,
Such divergence between tt and p might arise in two distinct

ways, (1) owing to variations of classification in sorting the

A 9

s a,nd a’s, the characters not beiilg* well defined— a source of

error which we need not further cliscuss, but one which may lead

to serious results [cf. ref. 5 of Chap. V.]. (2) Owing to either A ?

&

or a’s tending to escape the attentions of the sampler. To give

an illustration from artificial chance, if on drawing samples from
a bag containing a very large number %i black and white balls

the observed proportion of black balls was ?r, we could not

necessarily infer that the proportion of black balls in the bag was
approximately ir

9
even though the standard error were small, and

we knew that the proportions in successive samples were subject

to the law of simple sampling. For the black balls might be,

say, much more highly polished than the white ones, so as to
'

tend to escape the fingers of the sampler, or they might be re-

presented by a number of lively black insects sheltering amongst
white stones: in neither case, would the ratio of black balls to

white, or of insects to stones, be represented in their proper pro-

portions. Clearly,
.

in any parallel ease, inferences as to. the

material from which the sample- is drawn are of a very doubtful
and uncertain kind, and it is this uncertainty whether the - chance
of inclusion in the sample is the same" for fibs and a’s, far more
than the

; mere divergences .
between .different ; samples : drawn

' in
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the same way, which renders many statistical results- Based on

-samples so dubious.
.

*

- 5. Thus in collecting returns as to family income and expendi-

ture from working-class households, the families wi,Mi lower
:

incomes are almost certain to he under-represented ; they largely

“escape the sampler’s fingers ” from their simple lack of ability

to keep the necessary accounts. It is almost impossible to say,

however, to what extent they are under-represented, or to form

any estimate as to the possible error when two such samples

taken by different persons at different times, or in different places,

are compared. Again, if estimates as to crop-production are

formed on the basis' of a limited number of voluntary returns,

the estimates are likely to err in excess, as the persons who
make the returns? will probably include an undue proportion

of the more intelligent farmers whose crops will tend to be

above average. Whilst voluntary returns are in this way liable

to lead to more or less unrepresentative samples, compute-

sampling does not evade the difficulty. Compulsion could not

sure equally accurate and trustworthy returns from illiberal

and well-educated workmen, from intelligent and unintelligent

farmers. The following of some definite rule in drawing the

sample may also produce unrepresentative samples : if samples

of fruit were taken solely from the top layers of baskets exposed

for sale, the results might be unduly favourable; if from. the
bottom byer, unduly^unfavourable.

6. In such cases we can see that any sample, ' taken in the

way supposed, is likely to be definitely biassed
,

in the sense

that it will not tend to include, even in the long run, equal

proportions of the Ate and ate in the original material. In other

cases there may be no Obvious reason for presuming such bias,

but, on the other hand, no certainty that it does not exist. Thus
if we noted the hair-colours of the children in, say, one
school in ten in a large town, the question would arise whet Iter

this method would tend to give an unbiassed sample, of all the

children. No assured answer could he given : conjectures on
. the matter would be based in part on the way in which the

schools were selected, e.g, the volunteering of teachers for the work
might in itself introduce an element of bias. Again, if say
10,000 herrings were measured as landed at various North Sea,

ports, and the question were raised whether the sample was
likely to be an unbiassed sample of North Sea herrings, no
assured answer could be given. There may be no definite reason

for expecting definite bias in either case, but it may exist, and
no mere examination of the sample itself can give any informs
tiou as to whether it exists or no.
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7, Siica an ; examination may be .

' of' , service, ; however, as

iudieatJhg one possible source of bia$, viz, great heterogeneity in

the original material. If, for example, in the first illustration,

the bair*<solours of the children differed largely in the different

schools—much more largely than would • be accounted
;
for by

' fluctuations of simple sampling— it would be obvious that one

school would tend to give an ' unrepresentative . sample, and
questionable therefore whether the five, ten or fifteen schools

observed might not also have given an unrepresentative sample.

Similarly, if the herrings in different catches varied largely, it

would, again, be difficult to get a representative sample for a -

large area. But while the dissimilarity of subsamples would
then be evidence as to the difficulty of obtaining a representative

sample, the similarity of subsamples would,
1

* of course, be no
evidence that the sample was representative, for some very

different material which should have been represented ,might
have been missed or overlooked.

8. The student must therefore be very careful to remember-
that even if some observed difference exceed the limits of fluctua-

tion in simple sampling, it does not follow that it exceeds the

limits of fluctuation due to what the practical man would regard—
and quite rightly regard—as the chances of sampling. Further, '

he must remember that if the standard error be small, it. by no
means follows that the result is necessarily trustworthy : the

smallness of the standard erroi only indicates that ir is not

untrustworthy Giving to the magnitude of fluctuations of simple

sampling . It may be quite untrustworthy for other reasons

:

owing to bias in taking the sample, for instance, or owing to definite

errors in classifying the A’s and as. On the other hand, of course,

it should also be borne in mind that an observed proportion is not

necessarily incorrect, but merely to a greater or less extent
untrustworthy if the standard error be large. Similarly, if an
observed proportion sq in a sample drawn from one universe be
greater than an observed proportion 7r

2
in a sample drawn from

another universe, but ir
1
- -JL is considerably less than three times

the standard error of the difference, it does not, of course, follow

that the true proportion for the given universes, pl
and.. p2 ,

are

most probably equal. On the contrary, pt most lively exceeds p2 ;

the standard error only warns us that this conclusion is more or

less uncertain, and that possibly p2
may even exceed py

x
•• 9. Let us now consider the effect, on the standard-deviation of

sampling, of divergences from* the conditions of simple sampling
tb^hich'Wpre laid, down hi §;8mf,..Dhap.

;

XIIL:' q A" A. '\vAVa, h-'A-q

First suppose the condition (a) to break down, so that there is

some essential difference between the localities from which, dr the'
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conditions under which, samples are drawn, or that somw essential

ehmigi* has taken place during the period of sampling, mo may
represent such eircumstances in a ease of artificial chance by

supposing that for the -first f\ throws of n dice the chance of

success for each die is'p
l9

for the next/
2
throws p2?

for the nextfB
throws jy, and so on, the chance of success varying from ' time to

time, just as the chance of death, even for individuals of the same
age and sex, varies from district to district. Suppose, now, that

the records of all these throws are pooled together. The mean
number of successes per throw of the n dice is given by

M=^(flPl JrfiP2+fsP3+ • • • • )=»-2>0>

where N= IX/) is^he whole number of throws and. pQ
is the mean

value 2(fp)jJS
r
of the varying chance p. To find the standard-

deviation of the number of successes at each throw consider that

the- first set of throws contributes to the sum of the squares of

deviations an amount

- fl\nPl'h + rl?{Pl-Pofl

np
vqx being the square of the standard-deviation for these throws,

and n(p
x
-~p0) the difference between the mean number of

successes for the first set and the mean for all the sets together.

Hence the standard-deviation or of the whole distribution is given

by the sum of all quantities like* the above, or

Va-2 = n2(fp,j) + n* 2f{p -p0f.

Let <rp be the standard-deviation of p}
then the last sum is

d7.nV“, and substituting 1 -p for q, we have

cP np0 - npl - qktp

= np0<[0 + n(n-l)o* . . * (1)

This is the formula corresponding to equation. (1) of Chap.
XIII, : if we deal with the standard-deviation of the proportion

of successes, instead of that of the absolute number, we have,

dividing through by n\ the formula corresponding to equation

(2) of Chap. XIII., viz.™ *

.y •/:, •

,

JO. If w be large and <% be .the- standard-deviation calculated

from the mean proportion of successes p0,
equation (2) is sensibly

of the form e'

s
2

*== $$ 4“
®
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Ta ble tfuncmrf Frequencies of Registration Districts in England and Wales
with Different Proportions of Deaths'* in Childbirth (including Deaths,

from Puerperal Mver) per 1000 Births in the same Year, for the same
'Groups of Districts as in the Table of Chap. XIII. § 10. Data from same
source. Decade 1 5] 90. P .

Number of Births in the Decade.

Deaths in

Childbirth per

1 000 Births.
1500
to

'

2500.

3500
to

4000.

4500
to

5000.

10,000
to

15,000.

15,000
to

. 20,000.

30,000
to

50,000.

50,000
to

90,000.

•2 — #

'2'.’0^ 2*5 '
1 — 1 1 — - ;

. — . —
3*0 - 1 3 1 — '

j
'

—
'

:

—:

..
. _ 4

3*0- 8*5 1 . 5 2 4
'

1 * 2 ,

.

8*5- 4*0
,

5 6 5 8 ’fi' 5 • 9

|

0 5 8 23

'

4 9 6

4*5- 5*0
|

2 5 9
'

14 11 - 7 r 5

5*0- 5*5 7 8 6 14 6 8 U
5*5-- 6*0

.
5 •

:

: 3
'

!

.4 ' o
'

2 5 4
6*0- 6*5 1

|

5 1 [p'A'AAbV.
;

4 1 1

“ 6'5~ 7*0 3
1

'

1 .1
’

I.;.' 8
'

—
' H 2 1

7*0- 7*5 1 1 ~~~ ,:g 4. . „A:.

7*5- 8*0 — '

.

•

1 .

'

—

Q. 8*0- 8*5 — - — - AA_-.d d; — Vx —
8*5- 9*0 1 1 — i — %1

'

tC-.S.';-'-.?

'

1 :;V(i

9*0- 9*5 A ~~~ 'Cd

- 9*5-10*0 1
, j

* __ 1 — —
10*0-10*5 —

;
— 'A-:.;, — — A '

"

10*5-11*0 1
b

:

il

— —

.

1

Total 86 38
'

40 73; 1
33 43 35.Mean

;

5*29
'

4*71
,
4 *45 4*68 4*99

|

5*13 4*64

'Standard - de-
j

viation f

1*77

'

1*37 1*09 1*01 0*99 : St 0*87

Theoretical!
.
standard -de-

J

viation corn*- -

. f

|

1*62

«

1T2 0*97 0*61 0*53
~

0*36 0*26

spending to

mean births]

j

0*71 0*80 0*51 o*so 0*84 1 *07 0*83

and hence, knowing s and $0,
we can find <r.p the standard-deviation

of the chance or proportion in the universes from. which the

samples have been drawn.

The values of Jr ~ 4 are tabulated at the foot of the table

k|(Qwingdthe ^distribution ; of ' the-- proportion
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certain nitration districts of England, ia 3 10 of Chap XDI
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f
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’
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'
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n
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W
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„
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• deviation rnay eviS v d TJ krge the aotuaI standard
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round a mean value of oo-o ^„r
England and Wales fluctuated
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1

,
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3

:S$J 31

/22 x 978
V 2rxiF=°’032 -
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1
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are drawn. Suppose tint in h
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,
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,

e
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>
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«
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1

^ foi
al au^ ono

stant. from throw .to throw but differ ft

^ they are tion-

they would in any ordnan^efnfv",
°“° dle lo a“'>thor as

dndtheoifectofthese-d^i::i made dice T Required iu
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*
..

•

’

' v

I

• M=' 4- m
2p2 4- m$p

z 4
-

4
'

%
;

.

= ^o'
"

;

'

p{)
being the- mean chance H(mp)jn. To find the standard-deviation

of the number of successes at each throw, it should be rioted tjiat

this may be regarded as made up of the number of successes in

the m
A
dice for which the chances are qv,

together with the

number of successes amongst the m
2

dice for which the chances

are p2 qP and so on : and these- numbers of successes are all

independent. Hence ".Nyy .

a* = iii«i +m&St+ msPtfs + . .

= 2(mpq),

Substituting 1 ~p for q9
as before, and using &p to denote the

standard-deviation of p, \p:P:p:p/pyP-

/

(T“ — np
(Jq()

— noq, . (
3
)

or if 8 be, as before, the standard-deviation of the proportion of

successes, . -X'v

gJK-'h
„ . (4 )

12. The effect of the chances varying for £h.e individual dice or

other 44 events ” is therefore to lower the standard-deviation, as

calculated from the mean proportion p0 ,
and the effect may

conceivably be considerable. To take a limiting case, if p be zero

for half the events and unity for the remainder, p0 = q0
™ and

crp — so that s is zero. To take another illustration, still some-
. what extreme, if the values of p are uniformly distributed over,

the whole range between 0 and 1, p0 ~qQ
~ i as before but cr“ =

1/12 — 0*0833
1

(Chap. VIII. §_12, p. 143). "Hence s
2 -0*1667/%*

$ ~ 0-4:08/Jn, instead of Q-tyJn, the value of s if the chances are

J in every case. In most practical cases, however, the effect will be
much less. Thus the standard-deviation of sampling for a death-

rate of, say, 1 8 per thousand in a population of uniform age and

one sex is (18 x 982)*'/\Afc~- 133/Jn. In a population of the age

composition of that of England and Wales, however, the death-

rate is not, of course, uniform, but varies from a high value in

infancy (say 150 per thousand), through very low values (2 to 4

per thousand) in childhood to continuously increasing values in

old age
;
the standard-deviation of the rate within such a popula-

tion is roughly about 30 per thousand. * But the effect of this
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'

,

variation cm tbs standard-deviation of simple sampling is quite

small, for, as calculated from equation (4),

«2 = 1(18x 932 -900)

as compared with IZSjJn. .

13. We have finally to pass to the third condition (c) of § 8, Chap.

XIII., and to discuss the effect of a certain amount of dependence

between the several “ events
n
in each sample. We shall suppose,

'

. however, that the two other conditions (a) and (b) are fulfilled^

the chances p and q being the same for every event at every triaH

and constant throughout the experiment. The problem is' agaiiU

most simply treated on the lines of § 5 of the last chapter. The
standard-deviation for each event is (pc/f as before, but the events

are- no longer independent : instead, therefore, of the simple

expression •

..

cr*~n.pq
7

.

we must have (cj\ Chap. XI. § 2) .

'

o'
2 =* n.pq 4~ Spq(r12 ~r r

i;;
, -P .... . . «-V ),

where, r
12 ,

r
is,

etc. are the correlations between the results of the

first an^. second, first ana third events, and so - on—correlations

for variables (number of successes) which can only take the

values 0 and 1, but may nevertheless, of course, be treated as

ordinary variables (cf. Chap. XL § 10). There are n(n - 1 )/2
-

correlation-coefficients, and if, therefore, r is the "arithmetic mean
of the correlations we m%y write

cr
2 = -npq\\. +f(w ~ 1)] . . . * (5)

OiC * c * ’a xi- deviation of simple sampling will therefore be

Increased or diminished according as the ' average correlation

between the results of the single events is positive or negative,

and the effect may he considerable, as er may be reduced to zero,

or increased to n(pq)K For the standard deviation of the propor-

tion of successes in each sample we have the equation

.

_

+»*(«- i)l • • • • (0

It should be noted that, as the means aind standard-deviations

for our variables are all identical, r is the correlation-coefficient

for a table formed by taking all possible pairs of results in the
n events of - i di s m i ie~

; mW!
•

if M-m •

, „
,

,
'

u t 1 '*
,jk J

;
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ApcTpp'T -A 'p-'

\0-
:

.paP-
/ * pJ;

: ' ;;

p/' p p A;'

It should also he lotcd that 'he ease when r is positive covers

the departure ‘ from the rules
,

, of simple
::

sampling discussed in
:

§§ 9-10 : for if we draw' successive sanlples from different records,

this introduces the positive correlation at once, even although, the

results of the events at each trial are quite, independent of one

another. Similarly, the case discussed in §§- 11-12
^

is covered by
the case when r is negative : for if the chances are not the ssfitne

for every event at each trial, and the chance of success for some
one event is above the average, the mean chance of success for the

remainder must be below it. The cases (&), (6) and (e) are, how-
ever, best kept distinct, since a positive or negative correlation

may arise for reasons quice different from those discussed in

§§•9-12.

14. As a simple illustration, consider the important case of

sampling from a limited universe, e.g. of drawing n balls in

succession from the whole number w in a bag containing^?# white

balls and qw black balls. On repeating such drawings a large

number of times, we are evidently equally likely to get a white

ball or a black ball for the first, second, or nth ball of the sample

:

the correlation-table formed from all possible pairs of every sample

will therefore tend in the long run to give just the same form of

distribution as the correlation-table formed from all possible pairs’

of the w balls in the bag. But from Chap. XL § 11 wre

know that the correlation-coefficient f$r,this table is - Ijjgv - 1),

whence * * .

If ns*!, we have the obviously correct result that <r = (pqf, as

in drawring from unlimited material: if, on the other hand, n — 'wiv

& becomes zero as it should, and the formula is thus checked for

simple cases. For drawing 2 balls out of 4, o- becomes 0*816

(wpqf ; for drawing 5 balls out of 10
,
0*745 (npq)

1
;
in the case,

of drawing half the balls out of a very large number, it approx i-

;

lates to )*5.
; p)*, or 0*707 {npq)K

In the case -of contagious or infectious diseases, or of certain

forms of -.cement that are apt, if fatal at all, to result in whole-

sale deaths, n is positive, and if n be large (as it usually is in such

.
cases) a very small value of r m%y easily lead to a very great increase

in the observed standard-deviation. It is difficult to give a really

good example from actual statistics, as the conditions are hardly
ever constant from one -year to another,* but the following will
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sen e to illustrate the point. Dining the twenty years VISj - \ W)6

there 'were *2107 deaths from, explosions of firedamp or cua’iclrist
1

in the coal-mines of tlie United Kingdom, or an average oi 1 05

deaths per ' annum. I \ From § ;I2
;

;
of Chap. ’ XIII. it follows41iat /tliis:.-

,

should be the square of the standard-•deviation, of simple sampling,

or the standard deviation Itself approximately KKb Bat the

square of the actual standard-deviation is 7178, or its value 84- '7,

the numbers of deaths ranging between 14 (in 1902) and 3 17

(in 1894). This large standard-deviation, to judge from the

tig ures, is partly, though not wholly, due to a general tendency to

decrease in the numbers of deaths from explosions in spite of a

large increase in the number of persons employed ;
but even if jkjj

ignore this, the magnitude of the standard-deviation can he

accounted for by £ very small value of the correlation r, expressive

of the fact that if an explosion is sufficiently serious to be fatal to

. one individual, it will probably be fatal to others also. For if <r0

denote the standard-deviation of simple sampling, cr the standard-

deviation of sampling given by equation (5), we have

‘<*0

(n - 1 )of
r

Whence, from the above data, taking the numbers of persons

employed underground at^yough average of 560,000,

7073
' 560000 x 105

- + 0 *00012 .

15. Summarising the preceding paragraphs, §§ 9-14, we see

that if the chances p

'

and g differ for the various universes,

districts, years, materials, or whatever they may be from which

-

the samples are drawn, the standard-deviation observed will be

„
greater than the standard-deviation of simple sampling, as

calculated from the average values of the chances : if the average

chances are the same for each universe from which a sample is

drawn, but vary from individual to individual or from one sub-

class -to 'another within the universe, the standard-deviation

observed will be less than the standard-deviation of simple

sampling as calculated from the mean values of the chances:

finally, if p and q are constant, but the events are no longer

independent, the observed standard-deviation will be greater or

less than the simplest theoretical -value- according as the corre-

lation b -on the results of the single events is posi

negative. These conclusions further emphasise the need for

caution in the use of- standard errors. If we find that the
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standard-deviation -in some case of sampling exceeds the standard-

deviatitn of simple sampling, two interpretations are possible

:

either that p and q are different in*4he various 'universes from
'which, samples have been drawn '

(i.e. that . the variations are

more or less definitely significant in the sense of § 13, Chap. XIII.),

or that the results of the events are positively correlated inter

se. If. the actual standard-deviation .fall short of the standard-

deviation of simple
.

sampling : two interpretations are again

possible, either that the - chances p and q vary for different;

-individuals or sub-classes in each universe, while approximately

constant from one universe to another, or that the results of

the -events are negatively correlated inter se. Even if the

actual standard-deviation approaches closely to the standard-

deviation of simple sampling, it is only a conjectural and not

a necessary inference that all the conditions of “ simple sampling ”

as defined in § 8 of the last chapter are fulfilled. Possibly, for

example, there may be a positive correlation r between the

results of the different events, masked by a variation of the

chances p and q in sub-classes of each universe.

Sampling which fulfils the conditions laid down in § 8 "of

Chap.- XIII., simple sampling as we have called it, is generally

spoken of as random sampling. We have thought it better to

avoid this term, as the condition that the sampling shall be

random—haphazard—is not the only condition tacitly assumed.

* %
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samples.)
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trials ? Tables for small samples.)

EXERCISES.
* *

1. Referring to Question 7 of Chap. XIII., work out the values of the
significant standard-deviation trp {as in § 10) for each row or group of rows
tli- re given, but taking row 5 with rows 6 and 7.

19
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2. For all the districts in England and Wales included in the,, sain e table

(Table VI., Chap. IX.) the standard -deviation of the proportion of male births

per 1000 of all births is 7*46 and •the mean proportion of male births 509*2.

The harmonic mean number of births in a district is 5070. Find the signi-

ficant standard-deviation a> r
3. If for one half of % events the chance of success is p and the chance of

failure g, whilst for the other half the chance of success is q and the chance of

failure p, what is the standard-deviation of the number of successes, the events

being all independent?
4. The following are the deaths from small-pox during the 20 years

1882-1901 in England and Wales:—

1882 1317 1892 431

83 957 93 1457

84 2234 94 820

85 2827 95 223

v 275 96 541

87 506 97 25

88 1026 98 253
89 23 99 174
90 16 1900 85

91 49 1901 356

The death-rate from small-pox being very small, the rule of § 12, Chap,
XML y may be applied to estimate the standard -deviation of simple sampling.
Assuming that the excess of the actual standard-deviation over this can fie

entirely accounted for by a correlation between the results of exposure to risk

of the individuals composing the population, estimate r. The mean population
during the period may he taken in round numbers as 29 millions.
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CHAPTER XV,

THE BINOMIAL DISTRIBUTION AND THE
NORMAL CURVE. *

1-2. Determination of the frequency-distribution for the number of successes

in n events : the binomial distribution—3. Dependence of ?#ie form
of the distribution on p, q and n—4-5. Graphical and mechanical

methods of forming representations of the binomial distribution—

6. .Direct calculation of the mean and the standard-deviation from
the distribution— 7-8. Necessity of deducing, for use in nmny
practical cases, a continuous curve giving approximately, for large

values of n
9
the terms of the binomial series— 9. Deduction of the

normal curve as a limit to the symmetrical binomial—10-11. The
value of the central ordinate—12. Comparison with a binomial dis-

tribution for -a moderate value of n—13. Outline of the more general

conditions from which the curve can feeReduced by advanced jaethods—
14. Fitting the curve to an actual series of observations— 1 5. Difficulty

ofa complete test of lit by elementary methods— 16. The table of areas

of the normal curve and its use—17. The quartile deviation and the

“probable error
5 ’—18. Illustrations of the application of the normal

curve and of the table of areas.

L In Chapters XIII. and XIV. the standard-deviation of the

number of successes in n events was determined for the several

more important cases, and the applications of the results indicated.

For the simpler cases of artificial chance it is possible, however, tQ

go much further, and determine not merely the standard-deviation

but the entire frequency-distribution of the number of u successes.”

This we propose to do for the case of “ simple sampling,” in which
all the events are completely independent, and the chances p and

q the same for each event and constant throughout the trials.

The case corresponds to the tossing of ideally perfect coins (homo-
geneous circular discs), or the throwing of ideally perfect dice

(homogeneous cubes).

2. If we deal with one evgnt only, we expect in W trials, Nq
failures and Np successes. Suppose we now combine with the

results of this first event the results of a second. The two events

are quite independent, and therefore, according to the rule of

291
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independence, of the Fq failures of the first event (21
r
q)q will be

associated (on an average) with failusgs of' the second event, and

(Fq)p with successes of the second event (cf. row 2 of the scheme

on p. 291). Similarly of the Fp successful first events, (Fp)q will

be associated (on an- average) with failures of the second
.

event

and (Fp)p with successes.' In trials of two events we would

therefore expect approximately Fq2 cases of no success, 2Fpq
cases of one success and one failure, and Fp 2 cases of. two successes,

as in row 3 of the scheme. The results of a third event may be

combined with those of the first two in precisely the same way.

Of the Fq2 cases in which both the first two events failed, (Fq2
)q

will be associated (on an average) with failure of the third also,

(Fq*)p with success of the third. Of the 2Fpg cases of one

success and one failure, (2Fpq)q will be associated with failure

of the third event and (2Fpq)p with success, and similarly for

the Fp2 cases in which both the first two events succeeded^ The
result is that in F trials of three events we should expect Fq^
cases of no success, 3 Fpq2 cases of one success, 3 Fp2

q cases of two
successes, and FpB cases of three successes, as in row 5 of the

scheme. The scheme is continued for the results of a fourth

event, and it is evident that all the results are included under a

very simple' rule: the frequencies of 0, 1, 2 ... . successes are

given

for one event by the binomial«e»pansion of F(q-t-ra)
for i{wo events „ • „ * F(q^pf
for three events „ ,, F(q +p )

2

forfour events „ „ F(q +p)*

and soon. Quite generally, in fact:

—

thefrequencies of 0, 1, 2 ... .

successes in F trials of n events are giveh by the successive terms

in the binomial expansion of F(q + p)% viz.

—

N
|
?”+ 2

^ .

-2 2 ,

n
(
n '

2

p
2 +~ •.!)(» - 2

)

1.2.3
-y- l

]•

This is the first theoretical expression that we have obtained for

the form of a frequency“distribution.
3. The general form of the distributions given by such

binomial series will have been evident from the experimental
examples given in Chapter XIII., i.e. they ' are distributions

of greater or less asymmetry, tailing off in either direction

from the mode. The distribution is, however, of so much
importance that it is

0
worth while considering the form in

greater detail. This form evidently depends (1) on the values
of« q and p 9 (2) on the value of the exponent n. If p and q
are equal, evidently the distribution mtist be symmetrical, for
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© •

p aod q may be interchanged without altering the lvalue of

any term, and consequently terms equidistant from ® either

end of the series are equal. If p and q are unequal, on the

other hand, the distribution is asymmetrical, and tie more

asymmetrical, for the 'same value of n, the greater the inequality

of the chances. The following
.

table shows, the- calculated

distributions for n — -20 and values of p, proceeding by; 0.1,

from 0.1 to 0.5. When p - 0.1, cases of two successes are the

A.— Terms of the Binomial Series 10,000 (q+p)w for Values of p
from 0*1 to 0

*

5 . ( Figures given to the nearest unit.)

Number of j?= (f1 j?= 0*2 _p=0*3 $? = G*4 jp
= 0‘5

Successes. $ = 0*9 $=0*8 $= 0*7 $ = 0*6 q= 0*5

— ^—-

—

o
-

,

1216 115 8- _
1 2702 576 68 5 —
2 - 2852 1869 278 31 2

3 1901 2054 716 123 11

4 898 2182 1304 350 46

5 819' 1746 1789 746 148

6 89 1091 1916 1244 370

7 . 20 545 1643 1659 739
8 4 - 222 1144 1797 1201

9 r 1
* "74 • -- -654

j

1597 1602
10 20

*
808 1 1171 1782

11
' — 5 120 710 1602 •

12 1 39 855 1201
18 A

..

— 10 146 789

14 / ; —, .
— 49 370

15
i

-!• ' — 13 148
16

' — — '

• 1 3 46
17 '

. _ 11

18
19

—
' -

1 ~ — 2

i

20
|

;

— —
:

— —

most frequent, but cases of one success almost equally frequent :

even nine successes may, however,, occur about once in i0,000
trials., As p is', increased, the position of the maximum
frequency gradually advances, and the two tails of the distribution

become more nearly equal, until jp = 6.5, when the distribution

is symmetrical. Of course, if the table were continued, the
distribution for $9 = 0.6 would be* simitar to that for q = 0.6,

but reversed end for end, and so on. Since
' the standard-

deviation is (npq) h and the maximum value of pq is given by
P^q, the symmetrical -distribution has the greatest dispersion.
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If p Hhe effect of increasing n is to raise the mean and
increase the dispersion. If p is equal to q, however, not

only does an increase in n raise the mean and increase the

dispersioSi, but it also lessens the asymmetry
;

the greater

for the same value of p and q, the less the asymmetry.
Thus if we compare the first distribution of the above table

with that given by n— 100, we have the following :

—

&<—Terms of the Binomial Series 10,000 (0 '9 + 0T)100
. (Figures given

to the nearest unit.

)

Number
of

Successes.

Frequency.

Number
of

Successes.

Frequency.

Number
* of

Successes.

Frequency.

0 8 1148 16 193

1 3 9 1304 17 106

2 16 TO .1319 18 54

3 59 11
'

1199 19 26 *

4 159 12 988 20 12

5 339 13 743
' 21 5

6 596 .. 14 513 22 - 2

7 889 15 327 23 ‘ 1

% .

The maximum frequencies now* occur for *9 and 10 successes,'

and the two “tails.” are much more nearly equal. If, on the

other hand, n is reduced to 2, the distribution is*

—

Number of Successes,, Frequency.

0 8l3o
1 1800
2

.

; 100
;

and the maximum frequency is at one end of the range. What-
ever the values of p and qf if n is only -increased sufficiently, the

distribution may be treated as sensibly symmetrical, the necessary,

condition being (we state, this without .proof)' that p-q shall be

small compared with the standard-deviation Jnpq, It is left

to the student to calculate .as. an exercise the theoretical distribu-

tions corresponding to the experimental results cited in Chapter
XIII. (Question 1).

4. The property of Ifhe binomial series used in the scheme of

§ 2 for deducing the series
.
with exponent n from that with

exponent n- 1 leads to two interesting methods—graphical and
mechanical — for constructing approximate representations of
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binomial distributions. It will have been noted that f any one

term—say the rth— in one series is obtained by taking q times the

rth term together with p times the (r-l)th term of the preceding

series. Now if AP, CM (figure 46) be two verticals, ancha third,

BQ, be erected between them, cutting PM in Q, so that

AB : BC :: q :p, then

BQ —p.AP 4- q.CM.

(This follows at once on joining AM and considering the two

segments into which BQ is divided.) Consider then some

binomial, say for the case p — q = f . Draw a series of verticals

(the heavy verticals of fig. 47) at any convenient distance apart

on a horizontal base line, and erect other verticals (the lighter

verticals) dividing the distance between them in the ratio of

q :p, viz. 3:1. Next, choosing a verticil scale, draw the binomial

polygon for the simplest case » = 1 ;
in the diagram. F has been

taken = 4096, and the polygon is abed
,
ob = 3072, 1c = 1024. The

polygons for higher values of n may now be constructed graphi-

cally. Mark the points where ah, be, cd respectively cut the

intermediate verticals and project them horizontally to "the right

on to the thick verticals. This gives the polygon ab'cd’e Tor
n — 2. For ob

1 ~ q.ob, 1 c[ —p.ob + q. and«o on. Similarly, if the

points where ah', b'c, etc., cut the intermediate verticals are

projected horizontally on to the thick verticals, we have the
polygon ab"c"d

u
ey" £o& n — 3. The process may be continued
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indefinitely, though it will be found difficult to maintain any

high degree of accuracy after the first few constructions.

„5. The mechanical method of constructing the representation of

binomial series is. indicated diagrammafcically by fig. 48, The

Fig.

47.—

Graphical

Construction

of

Finonhal

Polygons

for

successive

values

of

n
:
A7

=4098,

p

—

q~
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apparatus consists of a funnel opening into a space—say
|
inch in

depth—between a sheet of glass and a back-board. This space is

broken up by successive rows of wedges like 1, 2 3, 4 5 6, etc., which

will divide up into streams any granular material such as shot or

mustard seed which is poured through the funnel when the

apparatus is held at a slope. At the foot these wedges are

replaced by vertical strips, in the spaces between which the

Flo. 48. —The Pearson-Galton Binomial Apparatus.

material can collect. Consider the stream of material that

comes from the funnel and meets the wedge 1. This wedge is

set so as to throw q parts of the stream to the left and p parts

to the right (of the observer). The wedges 2 and 3 are set so as

to divide the resultant streams in the same proportions. Thus
wedge 2 throws q

2 parts of the original material to the left and

qp to the right, wedge 3 throws parte of the original material

to the left and p2 to the right. The streams passing these wedges
are therefore in the ratio of q

2
: 2qp : p

2
. The next row of wedges

is again set so as to divide these streams in the same proportions
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as before, mnd the four streams that result will bear the propor-

tions <p : 3q
2p : 3qp

2
: pB

. The final,, set, at the heads of the

vertical strips, will give the streams proportions q* : 4q
zp : 6q2p2

:

iqjfi
: ^?

4
,
-and these streams will accumulate between the strips

and give a representation of the binomial by a kind of histogram,

as shown. Of course as many rows of wedges may be provided

as may be desired.

This kind of apparatus was originally devised by Sir Francis

Galton (ref. 1) in a form that gives roughly the symmetrical

binomial, a stream of shot being allowed to fall through rows of

nails, and the resultant streams being collected in partitioned

spaces. The apparatus was generalised by Professor Pearson,

who used rows of wedges fixed to movable slides, so that they

could be adjusted to give any ratio of q :p. (KM 13.)

6. The values of the mean and standard-deviation of a binomial

distribution may be found from the terms of the series directly,

as well as by the method of Chap. XIII. (the calculation was
in fact given as an exercise in Question 8, Chap. VII., and
Question 6, Chap. VIII.). Arrange the terms under each other

as in col. 1 below, and treat the problem as if it were an arith-

metical example, taking the arbitrary origin at 0 successes: as

'if is .a factor all through, it may be omitted for convenience.

(1) (2) (4)

Frequency f. Dev. £. /£• * /i
2
-

*

q
n 0 — ~

n,qn~hp 1 n,qu
~lp n.qn~~1p

n(ri- 1) £> „

j 2 ~i P 2 n(n - l)qn
~2p

2

^
2n(n - 1 )q

n ~'2p2

I)(w-2)

1.2.3 1 P 3
Zn{n - 1 )(n - 2) , 3

• L2 “ q
n~3pZ

The sum of col. 1 is of course unity, i.e. we are treating if as
unity, and the mean is therefore given by the sum of the terms
in col. (3). But this sum is

np
|
q
n~l+ (n - l)q

n~"p +— -

j4p
~—q'-y+ . . .

.
j

— np(q +p)
n~ l np.

Tiiat is, the mean M is np, as by the method of Chap. XIII
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• •

The square of the standard-deviation, is given by tke^sum of

the terms in col, (4) less tjhp square of the mean, that is,

[fftenp
|
q
n~l + 2{n - l)^p^ 3^ 7 + » • . - i

But the series in the bracket is the binomial series (q +jp)
M” 1

with the successive terms multiplied by 1, 2, 3, . . . It therefore

gives the difference of the mean of the said binomial from - 1,

and its sum is therefore (n- l)p + 1. Therefore

c

r

2 = np{(n - 1)^9 4* 1 }
- nPp2

~np - np2 = npq.

7. The terms of the binomial series thus afford a means of

completely describtng a certain class of frequency-distributions—

i.e. of giving not merely the mean and standard-deviation in

each <jase, but of describing the whole form of the distribution.

If iT samples of n cards each be drawn from an indefinitely large

record of cards marked with 4 or a, the proportion of 2-cards

ii^ the record beings, then the successive terms of the series

if(^ -b^)
w
~give the frequencies to be expected in the long run of

0, I, 2, . . .4-cards in the sample, the actual frequencies only

deviating from these by errors which are themselves fluctuations

of sampling. The three constants if, p, n, therefore, determine

the average or smoothed of the distribution to which actual

distributions will more or less ciosely approximate.

Considered, however, as a formula which may be generally

useful for describing frequency-distributions, the binomial series

suffers from a serious limitation, viz. that it only applies to a

strictly discontinuous distribution like that of the number of

4-cards drawn from a r^ord containing 4 J

s and a’s, or the number
of heads thrown in tossing a coin. The question arises whether*

we can pass from this discontinuous formula to an equation

* suitable for representing a continuous distribution of frequency.

8. Such an equation becomes, indeed, almost a necessity for

certain cases .with which we have already dealt. Consider, for

example, the frequency-distribution of the number of male births

in batches of *10,000 births, the mean number being, say, 5100.

The distribution will be given by the terms of the series

(0*49 + 0*5
1)

10000 and the standard-deviation is, in round numbers,
50 births. The distribution will therefore extend to some 150
births or more on either side of the mean number, and in order

to obtain it we should have to calculate some 300 terms of a
binomial series with an exponent of 10,0001 This would not
only be practically impossible without the use of certain methods
of approximation, but- it would give the distribution,, in quite
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unnecessary detail: as a matter of practice, we would not have

compiled a frequency-distribution by single male births, but

would certainly have grouped our observations, taking probably

10 births as the class-interval. We want, therefore, to replace the

binomial series by some continuous curve, having approximately

the same ordinates, the curve being such that the area between
any two ordinates yl

and y2
will give the frequency 'of observations

between the corresponding values of the variable x
x
and xr

9. It is possible to find such a continuous limit to the binomial

series for any values of p and g, but in the present work we will

confine ourselves to the simplest case in which p~q~ 0*5, and the

binomial is symmetrical. The terms of the series are

my i n(n
\

n
< I + n -1-

1.2
l)

,

-1)(»-
1.2.3

2) 4o
.

The frequency of m successes is

mm m In- m

and the frequency of m+ 1 successes is derived from this by
multiplying it by (n-m)/(m+l), The latter frequency is

therefore greater than the former so long as

or
n

l <Y~
-1 »

Suppose, for simplicity, that n is even, say equal to 2h
; then the

frequency of h successes is the greatest, and its value is

127..

|

k |l (1 )

The polygon tails off symmetrically on either side of this greatest

ordinate. Consider the frequency of k -j- x successes ;
the value is .

y*~xm
m

|
k + x \k- x (2)

and therefore
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Now let us approximate by assuming, as suggested i$ § 8, that

h is very large, and indeed large compared with x, so th&fc {x[!cf

may be neglected compared with (%/k). This assumption does

not involve any difficulty, for we need not consider values of -a?

much greater than three times the standard-deviation or 3 Jlcj2,

and the ratio of this to k is 3/ J27c, which is necessarily small if k

be * large. On this assumption we may apply the logarithmic

series

32 3s 34

'2 +
3 4

log,,(l+S) = S-rr + .--- +

to every bracket in the fraction (3), and neglect all terms beyond
the first. To this^degree of approximation,

Therefore, finally,

• . + 1)
'

ar

'M

V'iVW.
h
=V<fi

2cr2 (4 )

where, in the last expression, the constant h has been replaced by
the standard-deviation cr, for cr

2 = &/2.

The curve represented by this equation is symmetrical about

the point x= 0
}
which gives the greatest ordinate y = ^ean

>

median, and mode therefore coincide, and the curve is, in fact, that

drawn in fig. 5, p. 89, and taken as the ideal form of the symmetri-
cal frequency-distribution in Chap. YI. The curve is generally

known as the normal curve of errors or of frequency, or the law

‘of error.

10. A normal curve is evidently defined completely by giving

the values of y0
and cr and assigning the origin of x. If we

desire to make a normal curve fit some given distribution as near

as may be, the last two data are given by the standard-deviation

and the mean respectively
; the value of y0 will be given by the

fact that the areas of the two distributions, or the numbers of

observations which these areas represent, must be the same.

This condition does not, however, lead in any . simple and
elementary algebraic way to an expression for y0,

though such
a value could be found arithmetically to any desired degree
of approximation. Fq£ it is evident that (1) any alteration* in
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yQ
produces\ proportionate alteration fri the area of the curve,

•e.g. doubling y0
doubles every ordinate yx and therefore doubles

the area: (2) any alteration in o\ produces a proportionate

alteration in the area, for the values of yx are the same for the

same values of x/cr, and therefore doubling cr doubles the distance

of every ordinate from the mean, and consequently doubles the

area. The area of the curve, or the number of observations

represented, is therefore proportional to y0
<r

y
or we must have

M—a x no-

where a is a numerical constant. The value of a may be found

approximately by taking y0
and <r both equal to unity, calculating

the values of the ordinates yx for equidistant values of x, and
taking the area, or number of observations JS

1
) as given by the

sum of the ordinates multiplied by the interval.

11. The table below gives the values of y for values of x
proceeding by fifths of a unit

;
the values are, of course, the same

for positive and negative values of x. For the whole curve the

sum of the ordinates will be found to be 12-53318, the interval

being 0*2 units; the area is therefore, approximately, 2*50661,

Ordinates of the Curve y= e~ (For references to more extended

tables
,
see list on pp. 357-8.)

X. V- Log y. X. * *
'i

Logy.

0 1*00000 0 2*6 *03405 2*53209
0*2 •98020 1-99131 2*8 *01984 2-29757
0*4 *92312 1*96526 3*0 1 *01111 2*04567
0'6 *83527 1*92183 3*2 *00598 3*77641
0*8 *72615 1*86103 3*4 *00309 3*48978
1*0 *60653 1*78285 3*6

i

*00153 3*18577
1*2 *48675 1*68731 3*8

[
*00073 4*86439

1*4 *37531 1*57439 4*0 *00034 4*52564
1*6 *27804 1*44410 4*2 *00015 1 4*16952
1*8 *19790 1*29644 4*4 •00006 5*79603
2*0 *13534 1*13141 4*6 *00003 5*40516
2*2 *08892 2 ;94901 4*8 *00001 1*99693
2*4

|

*05614
;

2*74923 5*0 *00000 1*57132

and this is the approximate value of a. The value is more than
sufficiently accurate for practical purposes, for the exact value

is \/2tt== 2 ‘506627 . . . ? The? proof of this value cannot be given
here, but it may be deduced from an important approximate
expression for the factorials of large numbers, due to James
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Stirling (1730). If n b8 large, we have, to a higfi degree of

approximation,

I
n~ vMm

' ' - :

: ; 6

Applying Stirling's theorem to the factorials in equation (1) we

have

V^'
N N

sjir.k \/27T.iT

The complete expression for the normal curve is therefore

<*>.:

y.
N

\/2?r.cr

~Z
~2<ra

• («)

The exponent may he written x2/c2 where c = J'2.<r, and this is

the origin of the use of J2xcr (the “ modulus ”) as a measure

of dispersion, of 1/ *j2.cr as a measure of “precision," and of 2<r
2

as “theJluctnation ” (cf. Chap. YIII. § 13). The use of the factor

2 or J2 becomes meaningless if the distribution be not normal.

Another rule cited in Chap. YIII., viz. that the mean deviation

is approximately 4/5 of the standard-deviation, is strictly true

for the normal curve only. For this distribution the mean

deviation = <r sl2fjr= 079£8$ . . . . cr : the proof cannot be given

within the limitations of the ^present work. The rule that a

range of 6 times the standard-deviation includes the great

majority of the observations and that the quartile deviation is

about 2/3 of the standard-deviation were also suggested by the

properties of this curve^see below §§ 16, 17).

12. In the proof of § 9 the assumption was made that k (the_

half of the exponent of the binomial) was very large compared
with x (any deviation that had to be considered). In point

- of fact, however, the normal curve gives the terms of the

symmetrical binomial surprisingly closely even for moderate
values of n. Thus if w=6 4, k~ 32, and the standard-deviation

is 4. Deviations x have therefore to be considered up to ±12
or more, which is over 1/3 of k. As will be seen, however, from
the annexed table, the ordinates of the normal curve agree with

those of the binomial to the nearest unit (in 10,000 observations)

up to x~ ±15. The closeness of approximation is partly due
to the fact that, in applying the logarithmic series to the
fraction on the right of equation*(3), me terms of the second
order in expansions of corresponding brackets in numerator and
denominator cancel each other: these terms, therefore, do not
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accumulate, but only the terms of the third order. There is

only ono second-order term that has been neglected, viz. that due
to the last bracket in the denominator. Even for much lower

values of than that chosen for the illustration

—

e*g. 10 or 12

(cf, Qu. 4 at the end of this chapter)—the normal curve still

gives a very fair approximation.

Table showing (1) Ordinates of the Binomial Series 10,00.6 + mid

10,000 - S
(2) Corresponding Ordinates of the Normal Curve y *» ------ e

4\/2nr

Term.
Binomial
Series.

Normal
Curve.

Term.
Binomial
Series.

.'

Normal
Curve.

; ,
-:

32 993 997 24 and 40 136 135
31 and 33 963 967 23 „ 41 80 ^9
30 „ 34 878 880 22 „ 42 44 ! 44

29 ,, 35 753 753 21 „ 43 23
!

. 23

28 „ 36 606 . 605 20 „ 44 11 11
. 27. „ 37 459 457 19 „ 45 1 5 5

*

26 , } 38 326 324 18 „ 46 ;v. : 2 . 2

25 „ 39 217 216 17 „ 47 i 1

13. But if the normal curve were limited in its application to

distributions which were certainly of binomial type, its? use in

practice (apart from its theoretical applications to many cases of

the theory of sampling) would be very restricted. As suggested,

however, by the illustrations given in Chap. VI., a certain, though
not a large, number of distributions—more particularly among
those relating to measurements on inamtand other animals—are

.approximately of normal form, even although such distributions

have not obviously originated in the same way as a binomial

distribution. Take, for example, the distribution of statures in

the United Kingdom (Chap. YI., Table VI.). The mean stature*

is 67*46 inches, the standaad-deviation 2*57 inches (the values are

worked out in the illustrations of Chaps. VII. and VIII.), and the

number of observations 8585, This gives y0 =1333, and all the

data necessary for plotting a normal curve of the same mean and
standard-deviation (the process of fitting is dealt with at greater

length in §14 below). The two distributions are shown together

in fig. 49, the continuous curve being the normal curve, and the

small circles showing th$ observed frequencies. It is evident that

they agree very closely. Otlfer body measurements, e.g. skull

measure n mts, etc., also follow the normal law
;

it also applies to

certain characters in plants {e.g, number of seeds per capsule in

20
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Nelmnbium
,
Pearl, American Naturalist

,
Nov. 1906). Thp question

^

arises, therefore, why, in sqch cases, the distribution should be"

approximately normal, a fom of distribution which we have only

shown to arise if the variable is the sum of a large number of

elements, each of which can take the values 0 and 1 (or other two

constant values), these values occurring independently, and with

equal frequency.

In the first place, it should be stated that the conditions of the

deduction given in § 9 were made a little unnecessarily restricted,

mo

.wo

1

i

i
900

l
5s600

# n\

HIm mm m
w&mm m mmm m mm liH
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Stature in, inches

Fig. 49.—The Distribution of Stature for Adult Males in the British Isles

(lig. 6, p. 89), fitted with a Normal Curve : to avoid confusing the

figure, the frequency-polygon has not been drawn in, the tops of the

ordinates being shown by small circles.

#

with a view to securing simplicity of algebra. The deduction

may be generalised, whilst retaining the same type of proof, by
assuming that p and q are unequal (provided p-q be small

compared with Jnpqy cf. § 3)* that p and q are not quite the

same for all the events, that all the events are not quite inde-

pendent, or that 7i is not large, but that some sort of continuous

variation is possible in the values^of th$ elementary variables,

these being no longer restricted to 0 and 1, or two other discrete

values. (Cf. the deduction given by Pearson in ref. 13.) Pro-

ceeding further from thig last idea, the deduction may be rendefed
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more general still, without introducing the conception of the
*
binomial at all, by founding the ciyve on more or less complex

cases of the theory of sampling for variables instead of for attri-

butes. *If a variable is the sum (or, within limits, some slightly

more complicated function) of a large number of other variables,

then the distribution of the compound or resultant variable is

normal, provided that the elementary variables are independent,

or nearly so (ej\ ref. 6). The forms of the frequency-distribu-

tions of the elementary variables affect the final distribution less

and less as their number is increased: only if their number is-

moderate, and the distributions all exhibit a comparatively high

degree of asymmetry of uniform sign, will the same sign of

asymmetry be sensibly evident in the distribution of the compound
variable. On this sort of hypothesis, the expectation of normality

in the case of stature may be based on the fact that it is a highly

compound character—depending on the sizes of the bone* of the

head, the vertebral column, and the legs, the thickness of the

intervening cartilage, and the curvature of the spine—the elements

of which it is composed being at least to some extent independent,

i.e. by no means perfectly, correlated with each other, and their

frequency-distributions exhibiting no very high degree of asym-
metry of one and the same sign. The comparative rarity of

normal distributions in economic statistics is probably due in part

to the fact that in most cases, wiiije the entire causation is

certainly complex, relatively few causes havem largely predominant
influence (hence also the frequent occurrence of irregular

distributions in this field of work), and in* part also to a high
* degree of asymmetry in the distributions of the elements on which

* the compound variable depends. Errors of observation may in

general be regarded as compounded of a dumber of elements, due
* to various causes, and it was in this connection that the normal
curve was first deduced, and received its name of the curve of

errors, or law of error. *

14. If it be desired to compare some actual distribution

with the normal distribution, the two distributions should be
superposed on one diagram, as in fig. 49, though, of course, on
a much larger scale. When the mean and standard-deviation
of the actual distribution have been determined, y0

is given by
equation (5) ;

the fit will probably be slightly closer if the
standard-deviation is adjusted by Sheppard’s correction (Chap.
XL § 4). The normal curve is then most readily drawn by plot-

ting a scale showing fifths ci the standard-deviation along the
base line of the frequency diagram, taking the mean as origin,

and marking over these points the ordinates given by the figures

of the table on p. 303, multiplied in each case by g0
. The curve
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can be drawn freehand, or by aid of a curve ruler, through the

tops of the ordinates so determined. The logarithms of y ki the

table on p. 303 are given to facilitate the multiplication. The only

point in which the student is likely to find any difficulty is

in the use of the scales: he must be careful to remember

that the standard-deviation must be expressed in terms of the

class-interval as a unit in order to obtain for y0 a number of

observations per interval comparable with the frequencies of bis

table.

The process may be varied by keeping the normal curve

drawn to one scale, and redrawing the actual distribution

so as to make the area, mean, and standard-deviation the

same. Thus suppose a diagram of a normal curve was printed

once for all to a s£ale, say, of y0
— 5 inches, or — 1 inch, and

it were required to fit the distribution of stature to it.

Since t|ie standard-deviation is 2*57 inches of stature, the

scale of stature is 1 inch — 2-57 inch of stature, or 0*389 inches

= I inch of stature
;
this scale must be drawn on the base of the

normal-curve diagram, being so placed . that the mean falls

at
r
67*46. As regards the scale of frequency-per-interval, this

is given by the fact that' the whole area of the polygon showing
the actual distribution must be equal to the area of the

normal curve, that is 5 12*53 square inches. If, therefore,

the scale required is n observations per interval to the inch,

we have, xhe number 4 observations being 8585,

8585

n x 2*57
~ 12 ‘53,

which gives n~ 266*6.

Though the second method saves curve drawing, the first,

on the whole, involves the least arithmetic and the simplest

plotting.

15. Any plotting of a diagram, or the equivalent arithmetical

comparison of actual frequencies with those given by the

fitted normal distribution, affords, of course, in itself, only a

rough test, of a practical kind, of the normality of the given

distribution. The question whether all the observed differences

between actual and calculated frequencies, taken together,

may have arisen merely as fluctuations of sampling, so that the
actual distribution may be regarded as strictly normal, neglecting

such errors, is a question of a kind that cannot be answered in

an elementary work (cf. ref. 22). At present the student is in

a position to compare the divergences of actual from calculated

frequencies with fluctuations of sampling in the case of single

class-intervals, or single, groups of class-intervals only. If the
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expected theoretical frequency in a certain interval is /, the

standard error of sampling is Jf{N r^f)/N ; and if the divergence

of the observed from the theoretical frequency exceed some
three times this standard error, the divergence is unlikely to

have occurred as a mere fluctuation of sampling.

It should be noted, however, that the ordinate of the normal

curve at the middle of an interval does not give accurately the

area of that interval, or the number of observations within it : it

would only do so if the curve were sensibly straight. To deal

strictly with problems as to fluctuations of sampling in the

frequencies of single intervals or groups of intervals, we require,

accordingly, some convenient means of obtaining the number of

observations, in. a given normal distribution,^ lying between any
two values of the variable.

16. If an ordinate be erected at a distance x/cr from the mean,

in a normal curve, it divides the whole area into two p^rts, the

ratio of which is evidently, from the mode of construction of the

curve, independent of the values of ?/0
and of or. The calculation

of these fractions of area for given values of x/cr, though a lpng

and tedious matter, can thus he done once for all, and a table

giving the results is useful for the purpose suggested in § 15 and
in many other ways. References to complete tables are cited at

the end of this work (list of tables, pp. 357-8), the short table below
being given only for illustrative purposes. The table shows, the

greater fraction of the area lying on one sidt of any given ordinate

;

e.f/. 0‘53983 of the whole area lies on one side of an ordinate at

OTo- from the mean, and 0*46017 on the #ther side. It will be
" seen that an ordinate drawn at a distance from the mean equal to

the standard-deviation cuts off some 16 per cent, of the whole
area on one side

;
some 68 per cent, of ike area will therefore be

contained between ordinates at ± a. An ordinate at twice the

standard-deviation cuts off only 2*3 per cent., and therefore some
95*4 per cent, of the whole area lies within a range of + 2<r. As
three times the standard-deviation the fraction of area cut off* is

reduced to 135 parts in f00,000, leaving 99*7 per cent, within a
range of ±3er. This is the basis of our rough rule that a range
of 6 times the standard-deviation will in general include the

great bulk of the observations : the rule is founded on, and is only

strictly true for, the normal distribution. For other forms of

distribution it need not hold good, though experience suggests

that it more often holds than not. The binomial distribution,

especially Up and q be\meqiml, only becomes approximately normal
when n is large, and this limitation must be remembered in applying

the table given, or similar more complete tables, to cases in which
the distribution is strictly binomial.
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Table showing the Ch'eater Fraction of the Area of a Normal Curve to One
Bide of an Ordinate of Absctssa xj<r. (For references to more extended

tables^ see list on pp. 357-8.) #'

x/<r.

Greater

Fraction of

Area.

x/cr.

Greater

Fraction of

Area.

0 *50000 2 1
'

*98214

o-i *53983 2-2 *98610

0*2 *57926 2*3 •98928

0*3 *61791 2*4 *99180
0*4 * *65542 2*5 *99379

0*5 *69146 2*6 •99534

0*6 *72575 2*7 •99653

0*7 *75804 2‘8 •99744
0*8 *78814 2*9

j

•99813

0 9 *81594 3-0
|

*99865
1*0 *84134 3T

!

*99903

IT *86433 3-2 •99931
.

1*2 •88493 3*3 *99952
1*3 *90320 3*4 *99966
1*4 •91924 3*5 *99977
1*5 *93319 3*6 *99984
1*6 94520 3*7 *99989
1*7 •95548 r 3*8 *99993

r
a

.
8 @'96407 r 3*9 *99995

1*9 *97128 4*0 •99997
2*0 •97725

r

4*1 •99998

17. If we try to determine the quartile deviation in terms of

the standard-deviation fn$n the table, we see that it lies between
0’6 and 0*7cr. Interpolating, it is given approximately by

{
0-6 + O lUi }

o- - °

e

More exact interpolation gives the value 0*674489 75o-. This result,

again, is the foundation of the rough rule that the semi-inter-

quartile range is usually some 2/3 of the standard-deviation : it is

strictly true for the normal curve only. It may be noted that

the constant 0*67448975 .... can be determined by processes of

interpolation only, and cannot be expressed exactly, like the

mean deviation, in terms of any $ther known constant, such
as 7T.

It has become customary to use 0*674 .... times the standard
error rather than the standard error itself as a measure rof the
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unreliability of observed statistical results, and the term probable

*error is* given to this quantity. It should be noted that the word
“ probable ” is hardly used in its usual sense in this connection

:

the probable error is merely a quantity such that we may expect

greater and less errors of simple sampling with about equal

frequency, provided always that the distribution of errors is.

normal. On the whole, the use of the “ probable error ” has little

advantage compared with the standard, and consequently little

stress is laid on it in the present work
;
but the term is in constant

use, and the student must be familiar with it.

It is true that the “ probable error ” has a simpler and more direct

significance than the standard error, but this advantage is lost as

soon as we come to deal with multiples of the probable error.

Further, the best modern tables of. the ordinates and area of the

normal curve are given in terms of the standard-deviation or

standard error, not in terms of the probable error, and the mul-

tiplication of the former by 0*6745, to obtain the probable error,

is not justified unless the distribution is normal. For very large

samples the distribution is approximately normal, even though p
and q are unequal

;
hut this is not so for small samples, such "’as

often occur in practice. In the case of small samples the use of

the “probable error” is consequently of doubtful value, while the

standard error retains its significance as a measure of dispersion.

The “ probable error,” it may be mentioned, is often stated after

an observed proportion with th$ ± sign before it ; a percentage

given as 20*5 ±2*3 signifying “20*5 per cent., with a probable

error of 2*3 per cent.”

» If an error or deviation in, say, a certain proportion p only just

exceed the probable error, it is as likely as not to occur in simple

sampling : if it exceed twice the probable-terror (in either direction),
1

it is likely to occur as a deviation of simple sampling about 18
times in 100 trials—or the odds are about 4*6 to 1 against its

occurring at any one trial. For a range of three times the probable

error the odds are about 22 to 1, and for a range of four times the

probable error 142 to 1. '•Until a deviation exceeds, then, 4 times

the probable error, we cannot feel any great confidence that it is

likely to be “significant.” It is simpler to work with the standard
error and take ± 3 times the standard error as the critical range :

for this range the odds are about 370 to 1 against such a devia-

tion occurring in simple sampling at any one trial.

18, The following are a few miscellaneous examples of the use

of the normal curve and the £able of areas.

Example i.—A hundred coins are thrown a number of times.

How often approximately in 10,000 throws may (1) exactly 65
Heads, (2) 65 heads or more, be expected*?
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The standard-deviation is VO *5 x 0*5 x 100 = 5. Taking the,,

distribution as normal, y0 = 797*9.

The mean number of
r
heads being 50, 65 - 50=3cr. The

frequency of a deviation of 3a- is given at once by the tab£e (p. 303)

as 797*9 x *0111 .... =8*86, or nearly 9 throws in 10,000. A
throw of 65 heads will therefore be expected about 9 times.

The frequency of throws of 65 heads or more is given by the

area table (p. 310), but a little caution must now be used, owing

to the discontinuity of the distribution. A throw of 65 beads is

equivalent to a range of 64*5-65*5 on the continuous scale of the

normal curve, the division between 64 and 65 coming at 64*5.

64*5-50= +2*9or, and a deviation of +2*9.0- or more, will only

occur, as given by the table, 187 times in 100,000 throws, or, say,

19 times in 10,00(f.

Example ii.—Taking the data of the stature-distribution of fig.

49 (moan 67*46, standard-deviation 2*57 in.), what proportion of

all the individuals will be within a range of ± 1 inch of the

mean ?

r
l inch =0-389a-. Simple interpolation in the table of p. 310

gives 0*65129 of the area below this deviation, or a more extended

table the more accurate value 0*65136. Within a range of

± 0*389cr the fraction of the whole area is therefore 0*30272, or the

statures of about 303 per thousand of the given population will lie

within a range of ± 1 inehVfom the mean.
Example iii.—In a$oase of crossing a Mendelian recessive by a

heterozygote the expectation of recessive offspring is 50 per cent.

(1) How often would $0 recessives or more be expected amongst 50
offspring owing simply to fluctuations of sampling'? (2) How many'
offspring would have to be obtained in order to reduce the probable
error to 1 per cent. ?

c

The standard error of the percentage of recessives for 50

observations is 50 ^1/50 = 7*07. Thirty recessives in fifty is

a deviation of 5 from the mean, or, if we take thirty as representing
29*5 or more, 4*5 from the mean; that is, 0*636.<r. A positive

deviation of this amount or more occurs about 262 times in 1000,
so that 30 recessives or more would be expected in more than a
quarter of the batches of 50 offspring. We have assumed
normality for rather a small value of n, but the result is sufficiently

accurate for practical purposes.

As regards the second part of the question we are to have

*6745 x 50 =

n being the number of offspring. This gives » = 1137 to the
-nearest unit. - „
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Example iv.—The diagram of fig. 49 shows that the number of

stature!? recorded in the group “O^in. and less than 63 ” is

markedly less than the theoretical value. Could such a difference

occur owsng to fluctuations of simple sampling; and if so, how
often might it happen ?

The actual frequency recorded is 169. To obtain the theoreti-

cal frequency we may either take it as given roughly by The
ordinate in the centre of the interval, or, better, use the integral

table. Remembering that statures were only recorded to the

nearest in., the true limits of the interval are 61^-|~62Jf, or

61*94-62*94, mid-value 62*44. This is a deviation from the

mean (67*46) of 5*02. Calculating the ordinate of the normal

curve directly we find the frequency 197*8. This is certainly, as

is evident from the form of the curve, a little too small. The
interval' actually lies between deviations of 4*52 in. and 5*52

in., that is, l*759or and 2*148<r. The corresponding fractions of

area are 0*96071 and 0*98418, difference, or fraction of area

between the two ordinates, 0*02347. Multiplying this by the

whole number of observations (8585) we have the theoretical

frequency 201*5,

The difference of theoretical and observed frequencies is therefore

32*5. But the proportion of observations which should fall into

the given class is 0*023, the proportion falling into other classes

0*977, and the standard error of the cla^s frequency is accordingly

v/0‘023 x 0*977 x 8585= 14*0. hs the actulil deviation is only
2*32 times this, it could certainly have occurred as a fluctuation of

sampling. *»

' The question how often it might have occurred can only be
answered if we assume the distribution of |Luctuations of sampling
to be approximately normal. It is true that p and q are very
'unequal, but then n is very large (8585)—so large that the

difference of the chances is fairly small compared with sfiivpq

(about one-fifteenth). Hence we may take the distribution of

errors as roughly normal* to a first approximation, though a
first approximation only. The tables give 0*990 of the area
below a deviation of 2*32tr, so we would expect an equal or
greater deficiency to occur about 10 times in 1000 trials, or once
in a hundred,

,
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EXERCISES. *

1. Calculate the theoretical distributions for the three experimental cases

(1), (2), and (3) cited in § 7 of Chapter XIII.
2. Show that if np be a whole number, the mean of the binomial coincides

'with the greatest term.

3. Show that if two symmetrical binomial distributions of degree n (and
of the same number of observations) are so superposed that the ?'th term of

the one coincides with the (r-Pl)th term of the other, the distribution

formed by adding superposed terras is a symmetrical binomial of degree 1.

[Note : it follows that if two normal distributions of the same area and.

standard-deviation are superposed so that the difference between the means is

small compared with the standard-deviation, the compound curve is very
nearly normal.]

4. Calculate tire ordinates of the binomial 1024 (0*5 4- 0*5

)

10
,
and compare

them with those of the normal curve.

5. Draw a diagram showing the distribution of statures of Cambridge
students (Chap. VI., Table VII.), and a normal curve of the same area,

mean, ami standard-deviation superposed thereon.

6. Compare the values of the semi-interquartile range for the stature

distributions of male adults in the United Kingdom and Cambridge students.

(I) as found directly, (2) as calculated from the standard-deviation, on the
assumption that the distribution is normal.
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7. Taking tlie mean stature for the British Isles as 67*46 ^n. (the dis-

tribution of fig. 49), the mean for Cambridge students as 68*85 iiic, and the

common standard-deviation as »1>6 in., what percentage of Cambridge students

exceed the British mean in stature, assuming the distribution normal ?

8. As stated in Chap. XIII., Example ii., certain crosses of Pwmn sativum
based on 7125 seeds gave 25*32 per cent, of green seeds instead of the theoretical

proportion *25 per cent., the standard error being 0*51 per cent. In what per-

centage of experiments based on the same number of seeds might an equal or

greater percentage be expected to occur owing to fluctuations of sampling
alone ?

9. In what proportion of similar experiments based on (1) 100 seeds, (2)

1000 seeds, might (a) 30 per cent, or more, (6) 35 per cent, or more, of green
seeds, be expected to occur, if ever ?

10. In similar experiments, what number of seeds must be obtained to
make the ‘‘probable error” of the proportioh 1 per cent. ?

11. If skulls are classified as dolichocephalic when the length-breadth
index is under 75, vrfosocephalic when the same index lies between 75 ami 80,

and brachycephalic when the index is over 80, find approximately (assuming
that the distribution is normal) the mean and standard-deviation of a series

in which 58 per cent, are stated to be dolichocephalic, 38 per cent, meso-
cephalic, and 4 per cent, brachycephalic.



CHAPTER XVI.

NORMAL CORRELATION.

1-3. Deduction of the general expression for the normal correlation surface

from the case of independence—4. Constancy of the standard-

deviations of parallel arrays and linearity of tha regression— 5. The
contour lines: a series of concentric and similar ellipses—6. The
normal surface for two correlated variables regarded as a normal
surface for uncorrelated variables rotated with respect to the axes of

measurement : arrays taken at any angle across the surface are formal
distributions with constant standard-deviation : distribution of and
correlation between linear functions of two normally correlated

* variables are normal
:
principal axes—7. Standard-deviations round

the principal axes—8-11. Investigation of Table III., Chap. IX., 'tfi

test normality : linearity of regression, constancy ofstandard-deviation

of arrays, normality of distribution obtained by diagonal addition,

contour lines—12-1 3. Isotropy of the normal distribution for two
variables—14. Outline of the principal properties of the normal dis-

tribution for n variables.
#

1. The expression that we have obtained for the “ normal w
dis-

fcribution of a single variable may readily be made to yield a
corresponding expression for the distribution 8f frequency of pairs

of values of two variables. This normal distribution for two
variables, or “normal correlation surfaced is of great historical

importance, as the earlier work on correlation is, almost with-

out exception, based on the assumption of such a distribution;

though when it was recognised that the properties of the correla-

tion-coefficient could he deduced, as in Chap. IX., without reference
‘

to the form of the distribution of frequency, a knowledge of

this special type of frequency-surface ceased to be so essential.

But the generalised normal law is of importance in the theory of

sampling : it serves to describe very approximately certain actual

distributions (e.g. of measurements on man) ; and if it can be
assumed to hold good, some of the expressions in the theory of

correlation, notably the standard-deviations of arrays (and, if

more than two variables are
#
involved, the partial correlation-

coefficients), can be assigned more- simple and definite meanings
than in the general case. The student should, therefore, be
farftiliar with the more fundamental properties of the distribution.
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2. Consider first the case in which the two variable^ are corn-

pletely independent. Let the distributions of frequency for the

two variables x
x
and sifigly, be

Vi~Vi e

y^y* e
2*1

•
(i)

Then, assuming independence, the frequency-distribution of pairs

of values must, by the rule of independence, be given by

where""
Vn~yi2 e

-*(
<n tr2 -

Vir ~ F
F

2^.(7^

(2)

(S)

Equation (2) gives a normal correlation surface for one special

case, the correlation-coefficient being zero. If we put x
2
^.a con-

stant, we see that every section of the surface by a vertical plane

parallel to the x
x
axis, i.e. the distribution of any array of x

x% is

a normal distribution, whh«the same mean and standard-deviation

as the total distribution of aq’s^and a similar statement holds for

the array of sr
2
’s ;

these properties must hold good, of course, as

the two variables a*e assumed independent (c/. Chap. V. § 13).

The contour lines of the surface, that is to say, lines drawn oh
the surface at a constant height, are a series of similar ellipses

with major and minor axes parallel to the axes of x
x
and x

2
and

proportional to o

r

1
and cr

2,
the equations to the contour lines being

of the general form

l (To

:C2

(
4)

Pairs of values of x
x
and x

2
related by an equation of this form

are, therefore, equally frequent.

3. To pass from this special case of independence to the general

case of two correlated variables, remember (Chap. XII. § 8)
that if

Xi n ~ X-n-2

%i “ x
t

1
~ ^12*t-Xn

x
x
and as also x

2
and xh2 are uncorrelated. If they are not

merely nncorrelated buj} completely independent, and if the Sis-
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tribution jf each of the deviations singly be normal, we must have

lor the frequency-distribution of pairs of deviations of x
l
and x2 .

x

— P A^l *2*1'

But
Vu — y ne

X]

(5)

of
r
°iU of(l - rf2)

H
of(l - »fs)

""
'Vjo-^l - r?2)

2r„-

Xo _ X1X0

f +. -<r - 2r12
-—

“
1.1 0*

1.2 *
^*

2.1

Evidently we would also have arrived at precisely the same

expression if we had taken the distribution qf frequency for x
2

and x
h2>

and reduced the exponent

o o

9 9 •

0-0 crl<2

We* have, therefore, the general expression for the normal

correlation surface for two variables

>/ „
' *1.2 *2.1 1.8 2.1/

• (6)

Vn-yw e

Further, since x
x
and xrv x

2
and, xv2,

are independent, we must
have

, ^ w ^ JST = / /
2lT.ah(Toil 2iTT.(T'2 O’! 2 27T.Crl.OTo(i

— Ty$ * ^ '

4. If we assign to x» some fixed val^e* say h
2,

we have the
• distribution of the array of* aq’s of type h

2,

$12

Ji+1
W.2 *2.1 "Al/

= ?/J2.C
~°2

. £ y <rT.2

This is a normal distribution of standard-deviation <xL2 ,
with a

mean deviating by rvy
[*h

2
from the mean of the whole distribu-

tion of aq’s. As A
2
represents any value whatever of .rOJ we see

: (1J thatjbhe standard-deviations of all ' arrays of aq are the same,
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and equal to <xL2 : (2) that the regression of x
x
on x

2
is strictly

linear. Similarly, of course, if we assign to xl any Ya
r
lu t- hv w«f

will find (1) that the standard-deviations of all arrays of x2 are

the same
: (2) that the regression of x

2
on x

x
is strictly linear.

Q Axes oF Measurement x

M~ Mean of whole surface

and is also the summit of

Che surface

RR .CCr Lines of means

Contour lines and Axes of

normal correlation surface

Principal Axes and Contour Lines of the normal
Correlation Surface.

5. The contour lines are, as in the case of independence, a

series of concentric and similar ellipses
;

the major and minor
axes are, however, no longer parallel to tfye axes of x

l
and but

make a certain angle with them. *Fig. 50 illustrates the calcu-

lated form of the contour lines for one case, RR and CO being

the lines of regression. As each line of regression cuts ev&ry
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'Ao <;
:

~

» n
array of /r, or of a?

2
in its mean, and as the distribution of every

%rmy in symmetrical about its mean, ER must bisect every

horizontal chord and CC every vertical chord, as illustrated

bv the two chords shown by dotted lines : it also follows that

RR cuts all the ellipses in the .points of contact of the horizontal

tangents to the ellipses, and CC in the points of contact of

the vertical tangents. The surface or solid itself, somewhat
truncated, is shown in fig. 29, p. 166.

6. Since, as we see from fig. 50, a normal surface for two
correlated variables may be regarded merely as a certain surface

for which r is zero turned round through some angle, and since

for. every angle through which it is turned the distributions of all

x
l
arrays and x2 arrays are normal, it follows that every section

of a normal surface by a vertical plane is a norfaal curve, i.e. the

distributions of arrays taken at any angle across the surface are

normal. It also follows that, since the total distribution^ of x
l

and x
2
must be normal for every angle though which the surface

is turned, the distributions of totals given by slices or arrays

takqji at any angle across a normal surface must be normal
distributions. But these would give the distributions of functions

like a.Xj ± b.x
2,

and consequently (1) the distribution of any
linear function of two normally distributed variables x

1
and x2

must also be normal ,* (2) the correlation between any two linear

functions of two normally distributee! variables must be normal
correlation. '

m *

To find the angle 6 through which the surface has been turned,

from the position for which the correlation is^ero to the position

for which the coefficient has some assigned value r, we must use

a little trigonometry. The major and minor axes of the ellipses

are sometimes termed the principal axe«. be the co-

•ordinates referred to the principal axes (the ^-axis being the

x
x
axis in its new position) we have for the relation between,

"f2 >.
xv ^ an§^e 0 being taken as positive for a rotation of

the a^-axis which will make it, if continued through 90°, coincide

in direction and sense with«fche %axis,

~ xv cos $ + xT sin 0 } ,qv

£2 “ x2- cos $ - sin 0
J

’ * * ^ '

But, since ^ |2 are uncorrelated, 2(^2)
= 0, Hence, multiplying

together equations (8) and summing,

0 = (erf - erf) mm2

0

+ 2r12.tr1cra cos 26*

tan
. . . . (9)
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It should be noticed that if we define the principal axes of any

distribution for two variables as being a pair of axes it rightf

angles for which the variables £2 are uncorrelated, equation

(9) gives the angle that they make with the axes of measurement

whether the distribution be normal or no.

7. The two standard-deviations, say and S
2 ,

about the

principal axes ai;e of some interest, for evidently from § 2 the

major and minor axes of the contour-ellipses are proportional

to these two standard-deviations. They may be most readily

determined as follows. Squaring the two transformation equations

(8), summing and adding, we have

^V25 *crf 4-oi . . . . (10)

Referring the surface to the axes of measurement, we have for

the central ordinate by equation (7)

*
,

^ 12
27rcr

1cr2(l
— e

Referring it to the principal axes, by equation (3)

'

,

S
'

12 '"2^.2
1
2
2

-

But these two values of^tbe central ordinate must be equal,

therefore r r
S

1
23 =<r1

or2(l>-r^ . . , (11)

(10) and (11) are a
r
pair of simultaneous equations from which

Sj arid S
2
may be very simply obtained in any arithmetical case.

Care must, however, be taken to give the correct signs to the

square root in solving. 2^ + S2
is necessarily positive, and 2

X
- 2y

also if r is positive, the major axes of the ellipses lying along ^ :

^
but if r be negative, 2)

x
~ S

2
is also negative. It should be noted

that, while we have deduced (11) from a simple consideration

depending on the normality of the distribution, it is really of

general application (like equation 10), and may be obtained at
somewhat greater length from the equations for transforming
co-ordinates.

8. As stated in Chap. XV. § 13, the frequency-distribution

for any variable may be expected to be approximately normal
if that variable may be regarded as the sum (or, within limits,

some slightly more complex function) of «a large number of other
variables, provided that these elementary component variables
are independent, or nearly so. Similarly, the correlation between
two variables may be ^expected to be approximately norma? if
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^ach of thp two variables may be regarded as the sum, or some
slightly*more complex function, of a Jarge number of elementary

component variables, the intensity of correlation depending on

the proportion of the components common to the two variables.

Stature is a highly compound character of this kind, and we
have seen that, in one instance at least, the distribution of stature

for a number of adults is given approximately by the normal

curve. We can now utilise Table III, Chap. IX., p. 160, showing

the correlation between stature of father and son, to test, as far

as we can by elementary methods, whether the normal surface

will fit the distribution of the same character in pairs of indi-

viduals : we leave it to the student to test, as far as he can do so

by simple graphical methods, the approximate normality of the

total distributions for this table. The first important property

of the normal distribution is the linearity of the regression.

This was well illustrated in fig. 37, p. 174, and the closeness of

the regression to linearity was confirmed by the values of

the correlation-ratios (p. 206), viz., 0*52 in each case as com-

pared with a correlation of 0*51. Subject to some investiga-

tion as to the possibility of the deviations that do occur

arising as fluctuations of simple sampling, when drawing
samples from a record for which the regression is strictly

linear, we may conclude that the regression is appreciably

linear. .
/

9. The second important property of the?*normal distribution

for two variables is the constancy of the standard-deviation for

all parallel arrays. We gave in Chap. X. j*. 204 the standard-

deviations of ten of the columns of the present table, from the

.column headed 62*5-63*5 onwards; these were—

2-56 2*60

2*11 2*26

2*55 2*26

2*24 2*45

2*23 % 2*33

the mean being 2*36. The standard-deviations again only fluctuate

irregularly round their mean value. The mean of the first five

is 2*34, of the second five 2*38, a difference of only 0*04 : of the
first group, two are greater and three are less than the mean,
and the same is true of the second group. There does not seem
to be any indication of a general tendency for the standard-
deviation to increase or *decre£*se as we pass from one end of the
table to the other. We are not yet in a position to test how
far the differences from the average standard-deviation might
arise in sampling from a record in which the distribution was
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strictly normal, but, as a fact, a rough test suggests that they

might have done so.
*

10. Next we note that
r
the distributions of all arrays of a

normal surface should themselves be normal. .Owing
,€ however,

to the small numbers of observations in any array, the distributions

of arrays are very irregular, and their normality cannot be tested

in any very satisfactory way : we can only say that they do not

exhibit any marked or regular asymmetry. But we can test the

"allied property.of a normal correlation-table, viz. that the totals

of arrays must give a normal distribution* even if the arrays be

taken diagonally across the surface, and not parallel to either

axis of measurement (cf. § 6). From an ordinary correlation-

table we cannot find the totals of such diagonal arrays exactly,

but the totals of 'arrays at an angle of 45° will be given with,

sufficient accuracy for our present purpose by the totals of lines

of diagonally adjacent compartments. Referring again to Table

III., Chap. IX., and forming the totals of such diagonals (running

up from left to right), we find, starting at the top left-hand

corner of the table, the following distribution :— *

0*25 78*75

2 81*25

3.25 67*5

6*25 59*25

8 « * 42*25

5*75 30*75

29*25
3*1*5 19

41 10*75

46*25 7
60*5 4*25

67*5 3*5

85*75 1*75

87*25 !
78 r 0*25
94*25

Total 1078

The mean of this distribution is at 0*368 of an interval above the
centre of the interval with frequency 78 : its standard-deviation

is 4*755 intervals, or, remembering that the interval is I / J

2

of
an inch, 3*362 inches. (This value may be checked directly from
the constants for the table given iirChapflX., Question 3, p. 189,
for we have from the first of the transformation equations (8),

= cos2 &+ct£ sin2 0 -f 2r13<r1<r2. sin 0 cos
#
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and inserting oq = 2*72, cr
2
== 2*75, r

12 = 0*51, sin 0 — cos 0—1/ J2
Tmd (r^^’361). Drawing a diagram and fitting a normal

curve we have fig. 51 ;
the distribution is rather irregular but the

fit is fair ^ certainly there is no marked asymmetry, and, so far as

the graphical test goes, the distribution may be regarded as

appreciably normal. One of the greatest divergences of the

actual distribution from the normal curve occurs in the almost

central interval with frequency 78: the difference between the

observed and calculated frequencies is here 12 units, but the

standard error is 9*1, so that it may well have occurred as a

fluctuation of simple sampling.
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ITg. 51.—Distribution of Frequency obtained by addition of Table III.,

Chap. IX.,.along Diagonals running up from left to right, fitted with a
Normal Curve. **

11. So far, we have seen (1) that the regression is approxi-

mately linear
; (2) that, in the arrays which we have tested, the

standard-deviations are approximately constant, or at least that
*

their differences are only small, irregular and fluctuating
; (3) that

the distribution of totals for one set of diagonal arrays is approxi-

mately normal. These results suggest, though they cannot
completely prove, that the whole distribution of frequency may
be regarded as approximately normal, within the limits of fluctu-

ations of sampling. We may therefore apply a more searching

test, viz. the form of the contour lines and the closeness of* their

fit to the contour-ellipses of tbyp normal surface. We can see at

once, however, that no very close fit can he expected. Since the

frequencies in the compartments of the table are small, the

sfcahdard^ error of any frequency is given approximately by its
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square root (Chap. XIIlf§ 12), and this implies a standard error

of about 5 units at the centre of the table, 3 units for i frequency

of 9, or 2 units for a frequency of 4 : such fluctuations might

cause wide divergences in the corresponding contour lines.

Using the suffix 1 to denote the constants relating to the

distribution of stature for fathers, and 2 the same constants for

the sons,

#-1078 1L = 67*70

= 2*72

M, = 68*66

= 2*75
= 0*51

Hence we have from equation (7)

y 12
==26*7

and the complete expression for the fitted normal surface is

y = 26*7e

( x\
-*( —

H

\5*47
j4 xi%2

N

\

5-60 5*43 /

The equation to any contour ellipse will be given by equating

t]ie index of e to a constant, but it is very much easier to draw
the ellipses if we refer them to their principal axes. To do this

we must first determine 0, 2X
and 2

2 . From (9),

tan 28 — - 46*49,

whence 2# = 91° 14', 8 - 4£°r37', the principal axes standing, very

nearly r
at an angl# of 45° yith the axes of measurement,

owing to the two standard-deviations being very nearly equal.

They should be set on the diagram, not with a protractor, but
by taking tan# from the tables (1*022) and calculating points on
each axis on either side of the mean.
To obtain 2j and 2

2
f/e have from (10) and (11)

2? + 2§= 14*961

22^= 12*868

Adding and subtracting these equations from each other and
taking the square root,

20-2,= 5*275

2,- 22= 1*447

whence 2, = 3*36, 2
2
= 1*91

; owing to the principal axes stand-
ing nearly at 45° the first value is sensibly the same as that found
for o-| in § 10. The equations to the contour ellipses, referred to

the principal axes, may therefore fys written in the form

& , &
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the major and minor axes being 3*36 x c and 1'91 x c respectively.

To findcfer any assigned value of the frequency y we have
2*

, ~hc
Vv2 ~v ue

C2 =
20°g y

'

12
- lpg vA

log e

Supposing that we desire to draw the three contour-ellipses for

y
—

5, 10 and 20, we find 1*83, 1*40 and 0*76, or the following

Stature of Father : inches

Fie. 52.— Contour Lines for the Frequencies 5, 10 and 20 of the distribution

of Table III., Chap. IX., and corresponding Contour Ellipses of the fitted

Normal Surface. 1\ Pv 1\ jP2,
principal axes : M. mean.

m

values for the major and minor axes of the ellipses :—semi-major

axes, 6*15, 4*70, 2*55: semi-minor axes, 3*50, 2*67, 1*45. The

ellipses drawn with these axes are shown in fig. 52, very much
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reduced, of course, from fhe original drawing, one of the squares

shown representing a square inch on the original.
r

fh<r actual

contour lines for the same frequencies are shown by the irregular

polygons superposed on the ellipses, the points on these, polygons

having been obtained by simple graphical interpolation between

the frequencies in each row and each column—diagonal interpola-

tion between the frequencies in a row and the frequencies in a

column not being used. It will be seen that the fit of the two

lower contours is, on the whole, fair, especially considering the

high standard errors. In the case of the central contour, y = 20,

the fit looks very poor to the eye, but if the ellipse be compared
carefully with the table, the figures suggest that here again we
have only to deal with the .effects of fluctuations of sampling.

For father’s stature -66 in., son’s stature — 70 in., there is

a frequency of 1875, and an increase in this much less than the

standard error would bring the actual contour outside the ellipse.

Again,* for father’s stature — 68 in., son’s stature = 71 in., there

is a frequency of 19, and an increase of a single unit would give*

a point on the actual contour below the ellipse. Taking ihe
rdfeults as a whole, the fit must be regarded as quite as good as

we could expect with such small frequencies. It is perhaps of

historical interest to note that Sir Francis Galton, working with-

out a knowledge of the theory of normal correlation, suggested
that the contour lines of a similar table for the inheritance of

stature seemed to he ^loseiy represented by a series of concentric

and similar ellipses (ref. 2) : the suggestion was confirmed when
he handed the problem, in abstract terms, to a mathematician,
Mr J. D. Hamilton Hickson (ref. 4), asking him to investigate *

“the Surface of Frequency of Error that would result from
these data, and the various shapes and other particulars of its

sections that were made by horizontal planes ” (ref. 3, p. 102).

12. The normal distribution of frequency for two variables is

an isotropic distribution, to which all the theorems of Chap. V.

§§ 11-12 apply. For if we isolate the four compartments of the

correlation-table common to the rows and columns centring

round values of the variables xv x
2,
x

x ,
x2r we have for the ratio

of the cross-products (frequency of %
1
x
2
multiplied by frequency

of x[, x'2, divided by frequency of x
1
x2 multiplied by frequency of

x[ x
2),

**12

e
<rL2<r

2.l

Assuming that x\ - xY has been taken of the same sign as x2 - x
2 ,

the exponent is of the same sign as r
l$

. Hence the association for.
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this group of four frequencies is also of* the same sign as r12,
the

ratio of the cross-products being unity, or the association zero, *

if r
12

is zero. In a normal distribution, the association is therefore

of the same sign—the sign of r
12
—for every tetrad of frequencies

in the compartments common to two rows and two columns
;
that

is to say, the distribution is isotropic. It follows that every

grouping of a normal distribution is isotropic whether the cjass-

intervals are equal or unequal, large or small, and the sign of the

association for a normal distribution grouped down to 2- x 2~fold

form must always be the same whatever the axes of division

chosen.

These theorems are of importance in the applications of the

theory of normal congelation to the treatment of qualitative

characters which are subjected to a manifold classification. The
contingency tables for such characters are sometimes regarded as

groupings of a normal distribution of frequency, and the coefficient

of correlation is determined on this hypothesis by a rather lengthy

procedure (ref. 14). Before applying this procedure it is well,

therefore, to see whether the distribution of frequency may be
regarded as approximately isotropic, or reducible to isotropic form

by some alteration in the order of rows and columns (Chap. Y.

§§ 9-10). If only reducible to isotropic form by some rearrange-

ment, this rearrangement should be effected before grouping the

table to 2- x 2-fold form for the calculation of the correlation

coefficient by the process referred^to. If the^table is not Reducible

to isotropic form by any rearrangement, the process of calculating

the coefficient of correlation on the assumption of normality is to

^be avoided. Clearly, even if the table be isotropic it need not be

normal, but at least the test for isotropy affords a rapid and
simple means for excluding certain distributions which are not

* even remotely normal. Table II. of Chap. V. might possibly be

regarded as a grouping of normally distributed frequency if re-

arranged as suggested in § 10 of The same chapter—it would be
worth the investigator’s while to proceed further and compare
the actual distribution vflth a fitted normal distribution—but
Table IY. could not be regarded as normal, and could not be
rearranged so as to give a grouping of normally distributed

frequency.

13. If the frequencies in a contingency-table be not large, and
also if the contingency or correlation be small, the influence

of casual irregularities due to fluctuations of sampling may
render it difficult to say whether the distribution may be regarded
as essentially isotropic or no. In such cases some further con-

densation of the table by, grouping together adjacent rows and
columns, or some process of “smoothing” by averaging the
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frequencies in adjacent compartments, may be of service. The
correlation-table for stature in father and son (Table HI <5 Chap/*

IX), for instance, is obvioiMy not strictly isotropic as it stands:

we have, seen, however, that it appears to be normal, within the

limits of fluctuations of sampling, and it should consequently be

isotropic within such limits. We can apply a rough test by

regrouping the table in a much coarser form, say with four rows

and four columns : the table below exhibits such a grouping, the

limits of rows and of columns having been so fixed- as to include

net less than 200 observations in each array.

Table I.—(condensed from Table III. of Chapter IX.).

Son’s Stature

(inashes).

f
Father’s Stature (inches).

Under
65 ‘5.

65*5-67*5 67-5-69-5.
69-5

and over.
Total.

9
Under 66*5 97*5

|

74-25 34*75 10*5 217
66*5-68*5 76*5 108 85 52 321*5
68*5-70*5 33*25 64*75 95 84*5 277*5

70'5 and over 14*75 32 5 80*75 134 262

.
Total
fi

222 ¥4-5

:

—

*

295*5 281 . 1078,

Taking the ratio of the frequency in col. 1 to the sum of the

frequencies in cols. Pand 2 for each successive row, and so on for

the other pairs of columns, we And the following series of ratios

:

. _ .

Table II .—Ratio ofFrequency in Column m to Frequency in Column m
+ Frequency in Column (m -f 1 ) in Table I.

Row.

Columns

A*...

1 and 2. 2 and 3. 3 and 4.

1 0*568 0*681 0*768

2 0 415
‘

0*560 0*620

3 . 0.339 0*405 0*529

4 0*312 0*287

*
r

0*376

These ratios decrease continuously as we pass from the top to the
bottom of the table, andjbe distribution, as condensed, is therefore
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isotropic. The student should form one or two other condensations
** of theioilginal table to 3- x 3- or 4- x 4-fold form : he will probably-,

find them either isotropic, or diverging so slightly from isotropy

that an alteration of the frequencies, well within the margin of

possible fluctuations of sampling, will render the distribution

isotropic.

14. Before concluding this chapter we may note briefly,some
of the principal properties of the normal distribution of frequency

for any number of variables, referring the student for proofs to

the original memoirs. Denoting the frequency of the combination

of deviations #!, #
2 ,
#
3,

. . . ,
xn by yl2 m # >

we must have

in the notation of Chapter XII., if the uncorrelated deviations

x
2 l, #3a2 , etc. be completely independent (cf. § 3 of the present

chapter), *

(12)

(13)
O-:

• (14 )

The expression (13) for the exponent <j> may be reduced to a

general form corresponding to that given fgr two variables, viz.

—

Vu • *

where

_ »/ p-i<f>(zi%2 • • •

.. n~~ y 12 .... n 6
.xn) • *

„
$(X1

X
2 . . .

a,2 „.2 „2
\

X
l

,

,T2.l
,
%12

,

. ^n) ~~
2 * 2 ' 2 “T • • *

<*2.1 aZd2

|

#71.1 . T . . (71-11 :

^n.1 „ . ; . . (n—l)

and y .

if
• • • “ ~

(27r)
n/3

or
1
<r2.1

cr3,12 . . . * &n.l . ... (n-1)

+ — #5

-» 0*1.23 . ... n <^2.13 ....

X]Qfi

^

+ . . . 4-
J 71.12 . . . (n-1)

• (
15

)

12.3 . . . n V1.23 . . . 7*
flr2.13 . . . n

... — 2r.(«-l)7i.l^ . . (»—2)
^(/t-lj.l . . . (n—Sin^nd , , „ (n—l)

Several important results .may be deduced directly from the form

(13) for the exponent. Clearly this might have been written in

a great variety of ways, commencing with any deviation of the

first order, allotting any primary subscript to the second deviation

(except the subscript of the first), and so on, just as in $ 3 we
arrived at precisely the same final form for the exponent whether

we started with the two deviations x
l
and x%l or with x2 and #

1>2
.

Our assumption, then, that the deviations xv #2<1,
#312 ,

etc. are

normally distributed amounts to the assumption that all devia-

tions of any order and with any suffixes are normally distributed,

i.e. in the general normal distribution for n variables every array

of every order is a normal distribution. It will also follow, gen-

eralising the deduction of §i>, that any linear function of x2
? . . . xn is normally distributed. Further, if in (13) any fixed
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values be assigned to #
3 .12

and all the following deviations, the

correlation between x
x
and on expanding x%v is, as have

seen, normal correlation. *Similarly, if any fixed values be

assigned to xv to #
4 .123,

and all the following deviations, on

reducing % 12
to the second order we shall find that the correla-

tion between xM and xZil is normal correlation, the correlation

coefficient being r
23>1 ,

and so on. That is to say, using h to

denote any group of secondary suffixes, (1) the correlation between

any two deviations xmk and xnk is normal correlation

;

(2) the correla-

tion between the said deviations is rmnM whatever the particular

fixed values assigned, to the remaining deviations. The latter

conclusion, it will be seen, renders the meaning of partial

correlation coefficients much more definite in the case of normal

correlation than in* the general case. In the general case rmnj6
represents merely the average correlation, so to speak, between

xmJt andt^jr.: in the normal case rmnk is constant for all the sub-

groups corresponding to particular assigned values of the other

variables. Thus in the case of three variables which are normally #

correlated, if we assign any given value to #
3,

the correlatjpn

between the associated values of % and x
2

is r
12>3 : in the general

case r
12.3,

if actually worked out for the various sub-groups

corresponding, say, to increasing values of x
z,

would probably
exhibit some continuous change, increasing or decreasing as the

case might be. Finally, w^fyave to note that if, in the expression

(
15

)
for %, we. assig%, fixed values, say h2i hz,

etc., to all the
deviations except xv and then throw <j> into the form of a perfect

square (as in § 4 for t^e case of two variables), we obtain a normal
distribution for x

x
in which the mean is displaced by *

OT.23'.-..»i
, _ °L23... n t , „ .23... » 7

^12,34 . -
^2+ ^13.24 . . .n ^3 + . . . rln$ . . . (w_i)

°2.13 ...» °3.12...n '°n.l2...(n-1)

But this is a linear function of h
2 ,
h
z ,

etc., therefore in the case of

ftormal correlation the regression ofany one variable on any or all

of the others is strictly linear. The expressions rV2M _ n

<r
j 23 . , . , n!° 2.13 ... . »» etc. are of course the partial regressions

^12.34 . » >. . ns G^C *
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EXERCISES. # #

1. Deduce equation (11) from the equations for transformation ofco-ordinates

without assuming the normal distribution. (A proof will be found^n ref. 10.)

2. Hence show that if the pairs of observed values of itq.and x2 are repre-

sented by points on a plane, and a straight line drawn through the mean, the

sum of the squares of the distances of the points from this line is a minimum
if the*line is the major principal axis.

3. The coefficient of correlation with reference to the principal axes being

zero, and with reference to other axes something, there must be some pair of

axe# at right angles for which the correlation is a maximum, i. e. is numerically
greatest without regard to sign. Show that these axes make an angle of 45°

with the principal axes, and that the maximum value of the correlation is

—

o „«>

.

•"

• X-r; r>'

21+^2

4. (Sheppard, ref. 12.) A fourfold table is formed from a normal correla-

tion tablf, taking the points of division between A and a, B and /3, at the
medians, so that (.4) = («)==($) = ($)— N/2. Show that



CHAPTER XVII.

^ THE SIMPLER CASES OF SAMPLING POE VARIABLES

:

1 PERCENTILES AND MEAN.
S'

1-2. The problem of sampling for variables
;

the conditions assumed

—

3. Standard error of a percentile—4. Special values for the percentiles

of a normal distribution—5. Effect of the form of the distribution

generally—6. Simplified formula for the case of a grouped frequency-
* distribution—7. Correlation between errors in two percentiles of the

^ same distribution—8. Standard error of the interquartile range for the

normal curve—9. Effect ofremoving the restrictions of simplesampling,

and limitations of interpretation—-10. Standard error of the arithmetic

mean—11. Relative stability of mean and median in sampling-r-12.

Standard error of the difference between two means— 13. The tendency

to normality of a distribution of means—14. Effect of removing the re-

strictions of simple sampling—15. Statement of the standard errors of

standard-deviation, coefficient of v£ri2tion, correlation coefficient and
regression, correlation-ratio andcriterion for Pnearity of regression—16.

Restatement of the limitations of interpretation if the sample be small.

,1. In Chapters XIII.-XVI. we have been concerned solely with

the theory of sampling for the case of attributes and the frequency-

distributions appropriate to that case* We now proceed to

• consider some of the simpler theorems for the case of variables

(<;/’. Chap. XIII. § 2). Suppose that we have a bag containing a

practically infinite number of tickets or cards bearing the recorded

values of some variable AT, and that we draw a ticket from this

bag, note the value that i*> bears, draw another, and so on until

•we have drawn n cards (a number small compared with the whole
number in the bag). Let us continue this process until we have
W such samples of n cards each, and then work out the mean,
standard-deviation, median, etc., for each of the samples. No one
of these measures will prove to be absolutely the same for every
sample, and our problem is to determine the standard-deviation

that each such measure will exhibit.

2. In solving this problem, we must be careful to define

precisely the conditions which are assumed to subsist, so as to

realise the limitations of any solution obtained. These conditions
* 335
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were discussed very fully for the case of attributes (<3hap. XIII.

'.§ 8), and we would refer the student to the discussion ttfei]®given. *

Here it is sufficient to state the assumptions briefly, using the

letters .(a), (b) and (c) to denote the corresponding assumptions

indicated by the same letters in the section cited.

(a) We assume that we are drawing from precisely the same
record throughout the experiment, so that the chance of drawing

a card with any given value of X, or a value within any assigned

limits, is the same at each sampling.

{b) We assume not only that we are drawing from the same
record throughout, but that each of our cards at each drawing
may be regarded quite strictly as drawn from the same record (or

from identically similar records) : e.g. if our card-record is con-

tained in a series o# bundles, we must not make it a practice to

Xitke the first card from bundle number 1, the second card from
bundle number 2, and so on, or else the chance of drawing a

card with a given value of X, or a value within assigned limits,

may not be the same for each individual card at each drawing. «

(c) We assume that the drawing of each card is entirely

independent of that of every other, so that the value ofX recorded *

on card 1, at each drawing, is uncorrelated with the value of X
recorded on card. 2, 3, 4, and so on. It is for this reason that we
spoke of the record, in § 1, as containing a practically infinite

number of cards, for otherwise the successive drawings at each

sampling® would not be independent: if the bag contain ten

tickets only, bearing the numbers 1 to 10, and we draw the card

bearing 1, the average of the following cards drawn will be higher

than the mean of all cards drawn
;

if, on the other hand, we draw »

the.1 0, the average of the following cards will belowerthan the mean
of all cards

—

Le. there wjjl be a negative correlation between the

number on the card taken at any one drawing and the card taken *

at any other drawing. Without making the number, of cards in

the bag indefinitely large, we can, as already pointed oiit for the

case of attributes (Chap. XIII. § 3), eliminate this correlation by
replacing each card before drawing the next.

Sampling conducted under these conditions we shall, as before,
*

speak of as simple sampling. We do not, it should be noticed,

make the further assumption that the sample is unbiassed, Le.

that the chance of inclusion in the sample is independent of the

value of X recorded on the card (c/. the last paragraph in § 8,
1 Chap. XIII., and the discussion in §§ 4-8, Chap. XIV.). This •

assumption is unnecessary. If it Ijp truej the interpretation of

our results* becomes simpler and more straightforward, for we
can substitute for such phrases as ‘‘the standard-deviation of X
in a very large sample” “ the form of the frequency-distribution
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%in a very large sample” the phrases “the standard-deviation of

*X in thte original record ” u the form of the frequency-distribution

in the original record” : but in very litany, perhaps the majority

of, practical cases the very question at issue is the nature of the

relation between the distribution of the sample and the distribu-

tion of the record from which it is drawn. As has already been
emphasised in the passages to which reference is made above,* no
examination of samples drawn under the same conditions can

give any evidence on this head.

3. Standard Error of a Percentile.—Let us consider first the

fluctuations of sampling for a given percentile, as the problem is

intimately related to that of Chaps. XIII.-XIV.

Let Xp be a value of X such thatpN of the values of X in

an indefinitely large sample drawn under the j&une conditions lie

above it and qN below it.

If we note the proportions of observations above Xp in samples

of n drawn from the record, we know that these observed values

will tend to centre round p as mean, with a standard-deviation

Jpfjn. If now at each drawing, as well as observing the pro-

portion' of Xs above Xp) say p + 3, for the sample, we also proceed

to note the adjustment c required in Xp to make the proportion

of observations above Xp+ e in the sample pn
y
the standard-

deviation of € will bear to the standard-deviation of o the same
ratio that e on an average bears to^ But this ratio is quite

simply determinable if the number of observations in the* sample
is sufficiently large to justify us in assuming that $ is small-—so
small that we may regard the element of ^he frequency curve

{for a very large sample) over which Xv + € ranges as approximately
a rectangle. If this assumption be made, and we denote the

standard-deviation of X in a very larg# sample by <r, and the

’ordinate of the frequency curve at Xp when drawn with unit area

and unit standard-deviation by yp ,

,

Therefore for the standard-deviation of

corresponding to a proportion p we have

r. XJ&
P v y n

or of the percentile

4. If the frequency-cfcstribqfion for the very large sample be a
normal curve, the values of yp for the principal percentiles may be
taken from the published tables. A table calculated by Mr
Slfeppard (Table III., p. 9, in Tables for Statisticians and Biomet-
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ricians, or Table IV., ref. 16
,
in Appendix I.) gives the values

directly, and these have been utilised for the follo^iirg : the*

student can estimate the v£?ues roughly by a combined use of the

area and ordinate tables for the normal curve given pi Chapter

XV., remembering to divide the ordinates given in that table by

~J2tt so as to make the area unity

—

Median .

Deciles 4 and 6

,, 3 and 7

,,
2 and 8

„ 1 and 9

Quartiles

Value of yp

0*3989423
0*3863425

0*3476926
0*2799619
0*1754983
0*3177766

Inserting these values of yp in equation (1), we have the

following values for the standard errors of the median, deciles,

etc., a,i?d the values given in the second column for their probable

errors (Chap. XV. § 17), which the student may sometimes find

useful :— *

Median
Deciles 4 and 6 .

„ 3 and 7 .

• 2 arid 8 « .

„ 1 and 9 .

Quartiles
. 9 .

Standard error is

<rj\f% multiplied by

. 1*25331

. 1*26804

1*31800

. 1*42877

. 1*70942

. 1*36263

Probable error is

or/VW multiplied by

0*84535

0*85528
0*88897

0*96369

1*15298

0*91908

It will be seen that the influence of fluctuations of sampling on
the several percentiles increases as we depart from the median

:

the standard error of the quartiles is nearly one-tenth greater than
"

that of the median, and the standard error of the first or ninth

^deciles more than one-third greater.

5. Consider further the influence of the form of the frequency-

distribution on the standard error of* the median, as this is an
important form of average. For a distribution with a given
number of observations and a given standard-deviation the
standard error varies inversely as yp. Hence for a distribution in

which yp is small, for example a U-shaped distribution like that
of fig. 18 or fig. 19, the standard error of the median will be
relatively high, and it will, in so far, he an undesirable form of

average to employ. On the other hand, in the case of a distribu-

tion which has a high peak in the centre, so as to exhibit a value
of yP large compared with the standard-deviation, the standard
error of the median willbe relatively low. We can create sucli a
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“peaked” distribution by superposing a normal curve with a
Imall stan&ard-deviation on a normal curve with the same mean *

and a relatively large standard-deviatfdn. To give some idea of

the reduction in the standard error of the median that .may be
effected by a moderate change in the form of the distribution, let

us find for what ratio of the standard-deviations of two such curves,

having the same area, the standard error of the median reduces to

°V\/'ra, where o- is of course the standard-deviation of the com-
pound distribution.

Let cTj, cr
2
be the standard-deviations of the two distributions,

and let there be nj2 observations in each. Then

On the other hand, the value of yp is

—

{
- jL~ + —X— 1 ,.

/3±? m
* < 2V%.<r, 2j2ir.a-JV 2

*

Hence the standard error of the median is

o*x +
(c) is equal to ar/Jn if m

« 2 J7T<Ti(T2

Writing crj^ - p, that is if
^

V (* +p) Ji +p2

_ |

2 \Arp

or

p^ + 2p3 +42~47r)
/
)2 + 2p + l===0.

This equation may be reduced to a quadratic and solved by

taking p + ~j-as a new variable. The roots found give„p~ 2*2360

. ... or 0*4472 . . . ., the one root being merely the reciprocal of

the other. The standard error of the median will therefore be

<r[Jn, in such a compound distribution, if the standard-deviation

of the one normal curve is, m round numbers, about 2|- times

that of the other. If the ratio be greater, the standard error

of *the median will be less than ajjn. The distribution
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for which the standard error of the median is exactly equal to

• <r/Jn is shown in fig. 53 : it will be seen that it is byhuf mean/
a very striking form of distribution * at a hasty glance it might

almost' be taken as normal. In the case of distribution^ of a form

more or less similar to that shown, it is evident that we cannot

at all safely estimate by eye alone the relative standard error of

themedian as compared with a-/Jn.

6. In the case of a grouped frequency-distribution, if the

number of observations is sufficient to make the class-frequencies

run fairly smoothly, Le . to enable us to regard the distribution

as nearly that of a very large sample, the standard error of any
percentile can be calculated very readily indeed, for we can
eliminate cr from equation (1). Let +fp be the frequency-per-

class-interval at the given percentile— simple interpolation will

give us the value with quite sufficient accuracy for practical

purposes, and if the figures run irregularly they may be smoothed.
Let cr be the value of the standard-deviation expressed in class-

intervals, and let n be the number of observations as before.

Then since yp is the ordinate of the frequency-distribution when
drawn with unit standard-deviation and unit aim, we must
have
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But this gives at once for the standard error expressed in terms

V <&a&-interval as unit

As an example in which we can compare the results given by
the two different formulae (1) and (2), take the distribution of

stature used as an illustration in Chaps. VII. and VIII. and in

§§ 13, 14 of Chap. XV. The number of observations is 8585,

and the standard-deviation 2*57 in., the distribution being

approximately normal : cr/Jn — 0*027737, and, multiplying by the

factor 1*253 .... given in the table in § 4, this gives 0*0348

as the standard error of the median, on the assumption of

normality of the distribution. Using the tiirect method of

equation (2), we find the median to be 67*47 (Chap. VII. § 15),

which is very nearly at the centre of the interval yith a

frequency 1329. Taking this as being, with sufficient accuracy

for our present purpose, the frequency per interval at the median,

the^tandard error is

As we should expect, the value is practically the same as that

obtained from the value of the standard-deviation on the assump-
tion of normality.

* ~ ©

Let us find the standard error of the first and ninth deciles

as another illustration. On the assumption that the distribu-

tion is normal, these standard errors are the same, and equal to

0*027737 x 1*70942 ==0*0474. Using the direct method, we
find by simple interpolation the approximate frequencies per

* interval at the first and ninth deciles respectively to be 590 and

570, giving standard errors of 0*0471 and 0*0488, mean 0*0479,

slightly in excess of that found on the assumption that the fre-

quency is given by the normal curve. The student should notice*

that the class-interval is, ^in this case, identical with the unit. of

measurement, and consequently the answer given by equation (2)

does not require to be multiplied by the magnitude of the

interval.

In the case of the distribution of pauperism (Chap. VII.,

Example L), the fact that the class-interval is not a unit must
be remembered. The frequency at the median (3*195 per cent.)

is approximately 96, anil this ogives for the standard error of the

median by (2) (the number of observations being 632) 0*1309

intervals, that is 0*0655 per cent.

V. Inffinding the standard error of the. difference between two

78585

1329
= : 0-0349.

' Jp
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percentiles in the same distribution, the student must be ea re-

fill to note that the errors in two such pereentilds <are not

independent. Consider thS'two percentiles, for which the values

oip and q are px qv p2 q2
respectively, the first-named#being the

lower of the two percentiles. These two percentiles divide the

whole area of the frequency curve into three parts, the areas of

wh«h are proportional to q19 1 ~qx
~y>2,

and p2
> Further, since

the errors in the first percentile are directly proportional to the

errors in qv and the errors in the second percentile are directly

pfoportional but of opposite sign to the errors in p2,
the corre-

lation between errors in the two percentiles will be the same as

the correlation between errors in qx
and p2

hut of opposite sign.

But if there be a deficiency of observations below the lower

percentile, producfng an error in qv the missing observations

will tend to be spread over the two other sections of the curve

in proportion to their respective areas, and will therefore tend to

produce an error

S2
=-& S,

Pi 9

in p2 . If then r be the correlation between errors in qx
and p2,

£
1
and e

2
their respective standard errors, we have

• h m Pi

Or, inserting the values of the standard errors,

V: i

ft?i

The correlation between the percentiles is the same in magni-
’

tude but opposite in sign : it is obviously positive, and consequently

correlation between errors

in two percentiles }
"V+\/Mi (3)

If the two percentiles approach very close together, qx
and q2,

px
and p2

become sensibly equal to one another, and the correla-

tion becomes unity, as we should expect.

8. Let us apply the above value of the correlation between
percentiles to find the standard error of the semi-interquartile

range for the normal curve. Inserting %~P\ -f, we
find r ~ J. Hence the standard error of the interquartile range
is, applying tbe_ordinary formula for the standard-deviation of a

difference, 2/J3 times -the standard error of either quartile/or
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i
the standard error of the sem-interquartile range 1/^/3 times

The standard error of a quartile. Taking the value Of the *

standard error of a quartile from theTable in § 4, we have, finally,

V,'
' *
standard error of the semi-

) a
interquartile range in a - = 0*78672“T=r

. . (4)
normal distribution

j

^ 71
*

Of course the standard-deviation of the inter-quartile, or semx-

mterquartile, range can readily be worked out in any particular

case, using equation (2) and the value of the correlation

given above : it is best to work out such standard errors

from first principles, applying the usual formula for the standard
deviation of the difference of two correlated variables (Chap. XL
§ 2, equation (1)).

9. If there is any failure of the conditions of simple sampling,

the formulae of the preceding sections cease, of course, to hold

'good. We need not, however, enter again into a discussion of

the*effect of removing the several restrictions, for the effect gn
the standard error of p was considered in detail in §§ 9-14 of

Chap, XIY., and the standard error of any percentile is directly

proportional to the standard error otp (cf, § 3). Further, the

student may be reminded that the standard error of any per-

centile measures solely the fluctuation that may be expected in

that percentile owing to the errors of simple sampling ilone : it

has no bearing, therefore, save on the one question, whether an
observed divergence of the percentile, from certain value that

* might be expected to be yielded by a more extended series of

observations or tha£ had actually been observed in some other

series, might or might not be due t<& fluctuations of simple
* sampling .alone. It cannot and does not give any indication of

the possibility of the sample being biassed or unrepresentative of

the material from which it has been drawn, nor can it give any,

indication of the magnitude or influence of definite errors of

observation—errors which may conceivably be of greater im-

‘portan.ee than errors of sampling. In the case of the distribution

of statures, for instance, the standard error almost certainly gives

quite a misleading idea as to the accuracy attained in determining

the average stature for the United Kingdom : the sample is not

representative, the several parts of the kingdom not contributing

in their true proportions. The student should refer again to the

discussion of these points in j§§ 4-8 of Chap. XIV. Finally, we
may note that the standard error of a percentile cannot be
evaluated unless the number of observations is fairly large-—large

eflough^ to determine fp (eqn. 2) with .reasonable accuracy, or
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to test whether we may treat the distribution as approximately^

normal (cf. also §16 below).
*•' ®'

(As regards the theory
#
df sampling for the median and per-

centiles generally, cf. ref. 15, Laplace, Supplement II. ^(standard

error of the median), Edgeworth, refs. 5, 6, 7, and Sheppard, ref.

27: the preceding sections have been based on the work of

Edgeworth and Sheppard.)

10. Standard Error of the Arithmetic Mean .—Let us now pass

to a fresh problem, _and determine the standard error of the

arithmetic mean.

This is very readily obtained. Suppose we note separately at

each drawing the value recorded on the first, second, third ....
and nth card of our sample. The standard-deviation of the values

on each separate card will tend in the long run to be the same,

and identical with the standard-deviation or of x in an indefinitely

large pimple, drawn under the same conditions. Further, the

value recorded on each card is (as we assume) uncorrelated with

that on every other. The standard-deviation of the sum of the*

values recorded on the n cards is therefore Jn.(r
y
and *the

standard-deviation of the mean of the sample is consequently

1/nth. of this
;

or,

<r

\ * * * '

(
5
)

This is a most important and frequently cited formula, and the

student should note that it has been obtained without any
refei’enee to the size «£ the sample or to the form of the frequency-

distribution. It is therefore of perfectly general application, if

'

or be known. We can verify it against o&r formula for the

standard-deviation of sampling in the case of attributes. The
standard-deviation of the number of successes in a sample of m
observations is Jm.pq : the standard-deviation of the total

number of successes in n samples of m observations each is there-

fore Jnm.pq: dividing by n we have «the standard-deviation of

the mean number of successes in the n samples, viz. Jmpq jjnf
agreeing with equation (5).

11. For a normal curve the standard error of the mean is to

the standard error of the median approximately as 100 to 125

(fif § 4), and in general the standard errors of the two stand in

a somewhat similar ratio for a distribution not differing largely
from the normal form. For the distribution of statures used as
an illustration in § 6 the standard error of the median was found
to be 0*0349: the standard error of the mean is only 0*0277.

The distribution being very approximately normal, the ratio Of



*
*

% XVII.—SIMPLER CASES OF SAMPLING FOR VARIABLES. 345 *

*
"*

9 9

the two standard errors, viz. 1 *26, assumes almost exactly the theo-

retical magnitude. In the case of the asymmetrical distribution of 9

rates of pauperism, also used as an illustration in § 6, the standard

error of ^he median was found to be 0 -0655 per cent. The
standard error of the mean is only 0*0493 per cent., which bears

to the standard error of the median a ratio of 1 to 1*33. As
such cases as these seem on the whole to be the more common
and typical, we stated in Chap. VII. § 18 that the mean is in

general less affected than the median by errors of sampling. At
the same time we also indicated the exceptional cases in whfch

the median might be the more stable—-cases in which the mean
might, for example, be affected considerably by small groups of

widely outlying observations, or in which the frequency-distri-

bution assumed a form resembling fig. 53, but even more
exaggerated as regards the height of the central “peak” and the

relative length of the “tails.” Such distributions are £iot un-

common in some economic statistics, and they might be expected

*io characterise some forms of .experimental error. If, in these

cas*s, the greater stability of the median is sufficiently marked
to outweigh its disadvantages in other respects, the median
may be the better form of average to use. Fig. 53 represents

a distribution in which the- standard errors of the mean and of the

median are the same. Further, in some experimental cases it is

conceivable that the median may .^e less affected by definite

experimental errors, the average of which* does not tend to be
zero, than is the mean,—this is, of course, a point quite distinct

from that of errors of sampling. ^
* 12. If two quite independent samples of n

x
and n

2
observations

respectively be dra\vn from a record, evidently e
12,

the standard

error of the difference of their means is given by •

If an observed difference* exceed three times the value of c
12

•given by this formula it can hardly be ascribed to fluctuations

of sampling. If, in a practical case, the value of or is not known
a priori, we must substitute an observed value, and it would seem
natural to take as this value the standard-deviation in the two
samples thrown together. If, however, the standard-deviations
of the two samples themselves differ more than can he accounted
for on the basis of fluctuation^ of sampling alone (see below, § 15),

we. evidently cannot assume that both samples have been drawn
from the same record: the one sample must have been drawn
from a record or a universe exhibiting a greater standard-deviation
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than the other. If two samples be drawn quite independently
• from different universes, indefinitely large samples frfm* which*

exhibit the standard-deviafibns rr
}
and cr2 ,

the standard error of

the difference of their means will be given by #

4=?-l +~2

nL n2
(?)

This is, indeed, the formula usually employed for testing the

significance, of the difference between two means in any case

:

seeing that the standard error of the mean depends on the

standard-deviation only, and not on the mean, of the distribution,

we can inquire whether the two universes from which samples

have been drawn differ in mean apart from any difference in

dispersion.

If two quite independent samples be drawn from the same
universe, but instead of comparing the mean of the one with the

mean of the other we compare the mean m
x

of the first with the

mean m
0

of both samples together, the use of (6) or (7)v is not*

jratified, for errors in the mean of the one sample are correlated

with errors in the mean of the two together. Following precisely

the lines of the similar problem in § 13, Chap. XIII., case III., we

find that this correlation is and hence

(8)

(For a complete treatment of this problem in the case of samples

drawn from two different universes cf. ref. 22.)

13. The distribution of means of sample
#
s drawn under the

conditions of simple sampling will always be more symmetrical

than the distribution of the original record, and the symmetry
will he the greater the greater the number of observations in the

sample. Further, the distribution of means (and therefore also of

’the differences between means) tends to become not merely sym-
metrical but normal. We can only illustrate, not prove, the

point here
;
hut if the student will refer to § 13, Chap. XV., he will*

see that the genesis of the normal curve in this case is in accord-

ance with what we then stated, viz. that the distribution tends to

be normal whenever the variable may be regarded as the sum
(or some slightly more complex function) of a number of other

variables. In the present instance this condition is strictly ful-

filled. ..The mean of the sample of fi observations is the sum of

the values in the sample each divided by n
,
and we should expect

the distribution to be the more nearly normal the larger n. As
an illustration of the approach to symmetry even for small valtfes
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of we may take the following case. If the student will turn to

the calculated binomials, given as illustrations of the forms oi

binomial distributions in Chap. XT? § 3, he will find there the

distribution of the number of successes for twenty events when

£ = 0*9, p~0'l : the distribution is extremely skew, starting at

zero, rising to high frequencies for 1 and 2 successes, and thence

tailing off to 20 cases of 7 successes in 10,000 throws, 4'casgs of 8

successes and 1 case of 9 successes. But now find the distribu-

tion for tine mean number of successes in groups of five throws,

under the same conditions. This will be equivalent to finding

the distribution of the number of successes for 100 such events,

and then dividing the observed number of successes by five—the
last process making no difference to the form of the distribution,

but only to its scale. But the distribution of the number of

successes for 100 events when £ = 0*9, j9 = 0T, is also given in

Chap. XV. § 3, and it will be seen that, while it is appreciably

asymmetrical, the divergence from symmetry is comparatively

small: the distribution has gained very greatly in symmetry
though only five observations have been taken to the sample.

We may therefore reasonably assume, if our sample is large,

that the distribution of means is approximately a normal dis-

tribution, and we may calculate, on that assumption, the fre-

quency with which any given deviation from a theoretical value,

or a value observed in some other series, in an observed mean, will

arise from fluctuations of simple sampling^tlone.

The warning is necessary, however, that the approach to

normality is only rapid if the condition that the several drawings

for each sample shall be independent is strictly fulfilled. If the

observations are ngt independent, but are to some extent positively

correlated with each other, even a fairly large sample may con-

tinue to reflect any asymmetry existing in the original distribution

(cf. ref. 32 and the record of sampling there cited).

If the original distribution be normal, the distribution of

means, even of small samples, is strictly normal. This follows at

once from the fact that £ny linear function of normally distributed

variables is itself normally distributed (Chap. XVL § 6). The
distribution will not in general, however, he normal if the

deviation of the mean of each sample is expressed in terms of the

standard-deviation of that sample (cf. ref. 30).

14. Let us consider briefly the effect on the standard error of

the mean if the conditions of simple sampling as laid down in

§ 2 cease to apply. * ^

(a) If we do not draw from the same record all the time, but
first draw a series of samples from one record, then another

' beriesjrom another record with a somewhat different mean and
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standard-deviation, and so on, or if we draw the successive

.Samples from essentially different parts of the same reload, the

standard error will be greatly increased. For suppose we draw

\ samples from the first record, for which the standard-deviation

(in an indefinitely large sample) is <rv and the mean differs by
d

x
from the mean of all the records together (as ascertained by

largesamples in numbers proportionate to those now taken)
;
k
2

samples from the second record, for which the standard-deviation

is c

r

2 ,
and the mean differs by d

2
from the mean of all the records

together, and so on. Then for the samples drawn from the first

record the standard error of the mean will be crjjn, but the

distribution will centre round a value differing by d
x
from the

mean for all the records together: and so on for the samples

drawn from the oth&r records. Hence, if crm be the standard error

of the mean, N the total number of samples,

N.& ^)+W~,P).

Bu£ the standard-deviation <r
0
for all the records together is given

F.vt^(ka*) + 2(M2
).

Hence, writing 2(M2

)
= N.rm

1 n n (9)

This equation corresponds precisely to equation (2) of § 9, Chap.
XIV. The standard error of the mean, if our samples are drawn
from different records or

#
from essentially different parts of the

entire record, may be increased indefinitely as compared with the

value it would have in the case of simple sampling. If, for

example, we take the statures of samples of n men in a number
of different districts of England, and the standard-deviation of all

the statures observed is cr0 ,
the standard-deviation of the means

for the different districts will not be cr
Q/Jn,

but will have some
greater value, dependent on the real variation in mean stature

from district to district.

(b) If we are drawing from the same record throughout, but
always draw the first card from one part of that record, the

second card from another part, and so on, and these parts differ

more or less, the standard error of |he m&tn will be decreased.

For if, in large samples drawn from the subsidiary parts of the
record from which the several cards are taken, the standard-

deviations are Op <r
2 , , . <rm and the means differ by dv

J



1 *

% XVII.—SIMPLER CASES OF SAMPLING FOR VARIABLES. 349
-»

• 1
.... dn from the mean for a large sample from the entire record,

*

we have® °

Hence

Is
cro = +

n x
.

n '

»2
)

;°o _ V
n 7i m

The last equation again corresponds precisely with that given for

the same departure from the rules of simple sampling in the case

of attributes (Chap. XIY. § 11., eqn. 4). If, to vary our previous

illustration, we had measured the statures of men in each of n
different districts, and then proceeded to form a set of ^samples

by taking one man from each district for the first sample, one

man from each district for the second sample, and so on, the

stgyrdard-deviation of the means of the samples so formed would
be appreciably less than the standard error of simple sampling

vjjn. As a limiting case, it is evident that if the men in each

district were all of precisely the same stature, the means of all the

samples so compounded would be identical : in such a case, in fact,

o"o — sm and consequently crw— 0. To
%
give another illustration, if

the cards from which we were drawing samples had been- arranged

in order of the magnitude of X recorded on each, we would get

a much more stable sample by drawing^ one card from each

successive nth part of the record than by taking the sample

according to our previous rules

—

e.g> shaking them up in a bag
and taking out cards blindfold, or using^ome equivalent process.

The result is perhaps of some practical interest. It shows that,

if we are actually taking samples from a large area, different

districts of which exhibit markedly different means for the

variable under consideration, and are limited to a sample of n
observations

;
if we brealt up the whole area into n sub-districts,

each as homogeneous as possible, and take a contribution to the

sample from each, we will obtain a more stable mean by this

orderly procedure than will be given, for the same number of

observations, by any process of selecting the districts from which
samples shall be taken by chance.

%
There may, however, be a

greater risk of biassed error. The conclusions seem in acco'rd

with common-sense. *
.

f

(c) Finally, suppose that, while our conditions (a) and (b) of § 2

hold good, the magnitude of the variable recorded on one card

’drawn^ is no longer independent of th# magnitude recorded on
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another card, e.g. that if the first card drawn at any sampling

Shears a high value, the next and following cards of tfhe* same
sample are likely to bear hi$f values also. Under these circum-

stances, if rn denote the correlation between the valuqp on the

first and second cards, and so on,

• ” d- 2^(r12 -h

r

13 + . . ... . +%{+

There are n(n- 1)/2 correlations
;
and if, * therefore, r is the

arithmetic mean of them all, we may write

o*^[l+r(n- 1)] . . . (11)

As the means and standard-deviations of xv #2,
.... xn are all

identical^ r may more simply be regarded as the correlation

coefficient for a table formed by taking all possible pairs of the

n values in every sample. If this correlation be positive, the

standard error of the mean will be increased, and for a gi^n
value of r the increase- will be the greater, the greater the size of

the samples. If r be negative, on the other hand, the standard

error will he diminished. Equation (11) corresponds precisely to

equation (6), § 13, of Chap. XIV.
As was pointed out in that chapter, the case when r is positive

covers th# case discusged under {a) : for if we draw successive

samples from different records, such a positive correlation is at

once introduced, although the drawings of the several cards at

each sampling are quite independent of one another. Similarly,

the case discussed under
(
b
)

is covered by tjje case of negative

correlation, for if each car$ is always drawn from a separate and
distinct part of the record, the correlation between any two x’s will

on the average be negative : if some one card be always drawn
from a part of the record containing low values of the variable,

tfie others must on an average be drawn from parts containing

relatively high values. It is as well, however, to keep the cases

(a), (5), and (c) distinct, since a positive or negative correlation

may arise for reasons quite different from those considered under
(a) and (b).

15. With this discussion of the standard error of the arithmetic

mean we must bring the present work to a close. To indicate

briefly our reasons for not proceeding further with the discussion

of standard errors, we must remind tl^e stuclbnt that in order to

express the standard error of the mean we require to know', in

addition to the mean itself, the standard-deviation about the mean,
or, in other words, the me$n (deviation)2 with respect to the jnean!

>



'3 *

I

n
1

• giggiiS ;

« XVII.—SIMPLER CASES OF SAMPLING FOR VARIABLES. 351 *

• *
Similarly, to express the standard error of the standard-deviation

% we requite to know, in the general ease, the mean (deviation)4*

with respect to the mean. Either, th*en, we must find this quantity

for the grven distribution—and this would entail entering on a

field of work which hitherto we have intentionally avoided—or we
must, if that be possible, assume the distribution to be of such a

form that we can express the mean (deviation)4 in terms of the

mean (deviation)2
. This can he done, as a fact, for the normal

distribution, but the proof would again take us rather beyond
the limits that we have set ourselves. To deal with the standard

error, of the correlation coefficient would take us still further

afield, and the proof would be laborious and difficult, if not

impossible, without the use of the differential and integral cal-

culus. We must content ourselves, therefore, with a simple

statement of the standard errors of some of the more important

constants.

Standard-deviation .—If the distribution be normal,

standard error of the
)

standard-deviation in >

a normal distribution I
J2n

• (12)

This is generally given as the standard error in all cases :

however, by no means exact : the general expression is

standard error of the standard-
)

/

deviation in a distribution > =
. /

of any form j

/V i4
. n

it is,

(13)

where /x4
is the moan (deviation)4—deviations being, of course,

measured from the mean—and /x
2
the imean (deviation) 2 or the

square of the standard-deviation : n is assumed sufficiently large

to make the errors in the standard-deviation small compared with

that quantity itself. Equation (13) may in some cases give

values considerably greater—twice as great or more—than (12).

{Of. ref. 17.) If, howevef, the distribution be normal, equation

(12) gives the standard error not merely of standard-deviations of

order zero, to use the terminology of Chap. XII.
,
but of standard-

deviations of any order (ref. 33). It will be noticed, on reference

to equation (4) above, § 8, that the standard error of the standard-

deviation is less than that of the semi-interquartile range for a

normal distribution.

For abnormal distribution, -again, we have

—

standard error of the co-

efficient of variation:}-*X®)T <»>

J
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The expression in the bracket is usually very nearly unity, for

*a normal distribution, and in that case may be neglected. #

Correlation coefficient.—I? *the distribution be normal,

standard error of the nor-
j

j __ r
» #

Jn
relation coefficient for

a normal distribution

(15)

This is the value always given : the use of a more general formula

which would entail the use of higher moments does not appear

to have been attempted. As regards the case of small samples,

c/. refs. 10, 28, and 31. Equation (15) gives the standard . error

of a coefficient of any order, total or partial (ref. 33). For the

standard error of the correlation-coefficient for a fourfold table.

(Chap. XI., § 10), s$e ref. 34: the formula (15) does not apply.

Coefficient of regression.—If the distribution be normal,

sta%dard error of the co-

efficient of regression 6
12

?

for a normal distribution
j

l .°1. JI °i.2

. *Jn , Jn
m.

This formula again applies to a regression coefficient of any order,

total or partial : i.e . in terms of our general notation, h denoting
any collection of secondary subscripts other than 1 or 2,

standard error of bu .k . for 1

a normal distribution
J

&
1.27c

Taj. Jn

Correlation ratio .—The general expression for the standard

error of the correlation-ratio is a somewhat complex expression

(cf. Professor Pearson’s original memoir on the correlation-ratio,
*

ref. 18, Chap. X.). In general, however, il? may be taken as

given sufficiently closely f>y the above expression for the standard

error of the correlation coefficient, that is to say,

standard error of correlation-

ratio approximately sjn

't
. (17)

As was pointed out in Chap. X., § 21, the value or £= r/
2 - r2 is a •

test for linearity of regression. Very approximately (Blakeman,
ref. 1),

standard error of £ - 2Ji V(l-f)^(l-r-7+l . (18)

For rough work the value of the second square root may be
taken as nearly unity, and we have then the simple expression,

standard error of £ roughly =

V:
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To convert any standard error to the probable error multiply by
%
the comtomt 0*674489 .... •

16. We need hardly restate once Ifiore the warnings given in

Chap. XIV., and repeated in § 9 above, that a standard error can

give no evidence as to the biassed or representative character of

a sample, nor as to the magnitude of errors of observation, but
we may, in conclusion, again emphasise the warnings given
in §§ 1-3, Chap. XIV., as to the use of standard errors when
the number of observations in the sample is small.

In the first place, if the sample be small, we cannot in general

^ assume that the distribution of errors is approximately normal

:

it would only be normal in the case of the median (for which

p and • q are equal) and in the case of the mean of a normal
distribution. Consequently, if n be small? the rule that a

range of three times the standard error includes the majority

of the fluctuations of simple sampling of either sign does not

strictly apply, and the “ probable error” becomes of doubtful
• significance.

Secondly, it will be noted that the values of cr and yp in (l),^of

fp in (2), and of <r in (4) and (5), i.e. the values that would be

given for these constants by an indefinitely large sample drawn
under the same conditions, or the values that they possess in

the original record if the sample is unbiassed, are assumed to be

known a priori. But this is only tlje case in dealing with the

v problems of artificial chance : ip practical,,cases we ha* re to use

the values given us by the sample itself. If this sample is based

on a considerable number of observations,mthe procedure is safe

* enough, but if it be only a small sample we may possibly mis-

estimate the standard error to a serious extent. Following the

procedure suggested in Chap. XIV., some rough idea as to the

' possible extent of under-estimation or over-estimation may be

obtained, e.g. in the case of the mean, by first working out the

standard error of or on the assumption that the values for the

necessary moments are correct, and then replacing cr in the

expression for the standafd error of the mean by <j ± three times

'its standard error so obtained.

Finally, it will be remembered that unless the number of

observations is large, we cannot interpret the standard error of

any constant in the inverse sense, i.e. the standard error ceases

to measure with reasonable accuracy the standard-deviation of

true values of the constant round the observed value (Chap.

XIV. %, 3). If the 'sample be large, the direct and inverse

standard errors are approximately the same.



I

• *

•354 THEORY OF STATISTICS.

References.

#

« «

* The probable errors of various special coefficients, etc., are generally dealt*

with in the memoirs coneerniniftpiteni, reference to which has been made in
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EXERCISES.

1. Jor the data in the last column of Table IX., Chap. VI. p. 95, find

the standard error of the median (151*7 lbs.).

2. For the same distribution, find the standard errors of the two quartiles

(U&5 lbs., 168*4 lbs.).

3. For the same distribution, find the standard error of the semi-inter^

qnartile range.

4. The standard-deviation of the same distribution is 21*3 lbs. Find the
standard error of the mean, and. compare its magnitude with that of the

standard error of the mfdian (Qn. 1).

5. Work out the standard error of the standard deviation for the distribu-

tion of statures used as an illustration in § 6. (Standard -deviation 2*57 in.
;

8585 observations.) Compare the ratio of standard error of standard-

deviation to the standard-deviation, with the ratio of the standard error of
the semi-interquartile range to the semi-interquartile range, assuming the
distribution normal.

o. Calculate a small table giving the standard errors of the correlation

coefficient, based on (1) 100, (*2) 1000 observations, for values ot>=0, 0:2, 0*4,

0*6, 0*8, assuming the distribution normal.
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APPENDIX I.

* ’S

TABLES FOB FACILITATING STATISTICAL WORK.

A. CALCULATING TABLES.

Foe heavy arithmetical work an arithmometer is, oU course,

invaluable
;
but, owing to their cost, arithmetic machines are, as a

• rule, beyond the reach of the student. For a great deal of simple

work, especially work not intended for publication, the student

will find a slide-rule exceedingly useful
:
particulars and prices

will be found in any instrument maker’s catalogue. A plain

25-cm. rule will serve for . most ordinary purposes, or if greater

accuracy is desired, a 50-em. rule, a Fuller spiral rule, or one of

Hannyngton-pattern rules (Aston 4 gander, London), in which

the scale is broken up into a number of parallel segments, maybe
preferred. For greater exactness in multiplying or dividing,

logarithms are almost essential : five-figure tables suffice if answers
• are only desired true to five digits

;
if greater accuracy is needed,

seven-figure tables jjciust be used. It is hardly necessary to cite

special editions of tables of logarithms'*!here, but attention may
' perhaps be directed to the recently issued eight-figure tables of

Bauschinger and Peters (W. Engelmann, Leipzig, and Asher <fc Go.,

London, 1910; vol. i. containing logarithms of all numbers from
1 to 200,000, price 18s. fid. net.; vol. ii. containing logs, of

trigonometric functions).
m

If it is desired bo avoid logarithms, extended multiplication

tables are very useful. There are many of these, and four of

different forms are cited below. Zimmermann’s tables are inex-

pensive and recommended for the elementary student, Cotsworth’s,

Crelle’s, or Peters’ tables for more advanced work. Barlow’s tables

are invaluable for calculating standard-deviations of ungrouped
observations and similar work.

(1) Baulow’s Tables of Squares, Cubes, Square-roots, Cube-roots
, and Reeip-

# rocals of all Integer Numbers up to 10,000 ;
E. & F. N. Spoil,

* London and New York
;
stereotype edition, price -I s.

S5?
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(2) Cotsworth, M» B., The Direct Calculator, Scries 0. (Proifact table to

* 1000 x 1000. )
M'Corquodale k Co,, London

;
price with thumb index,

25s.
;
without index, 21s. « «

(3) Crbsllb, A. L., Mechentafeln. (Multiplication table giving all products up
to 1000x1000.) Can be obtained with explanatory introduction in

German or in English. G. Reimer, Berlin
;
price 1 5s.

(4)

Eldeiiton, W„ P. “Tables' of Powers of Natural Numbers, and of the

Sums of Powers of the Natural Numbers from 1 to 100” (gives

powers up to seventh), Biometrika, vol. ii. p. 474.

(5) Peters, J. ,
JSfeue Rcchentafeln fiXr Multiplication und Division. (Gives

products up to 100 x 10,000 : more convenient than Crelle for forming
• four-figure products. Introduction in English, French or German.)

G. Reimer, Berlin
;
price 15s.

(6) Zimmekmann, H., Rechcntafel,
nebst Sammlung haufig 'gebrawshtef

Zalilenwerthe. (Products of all numbers up to 100 x 1000 : subsidiary

tables of squares, cubes, square-roots, cube-roots and reciprocals, etc.

for all numbers up to 1000 at the foot of the page.) W. Ernst k Son,

Berlin
;
price 5s. ;

English edition, Asher & Co.
,
London, 6s.

B. SPECIAL TABLES OP FUNCTIONS, ETC.

Several tables of service will be found in the works cited in

Appendix II., e.g., a table of Gamma Functions in ElderJam’s,
book (12) and a table of six-figure logarithms of the factorials

of all numbers from 1 to 1100 in De Morgan’s treatise (11). The
majority of the tables in the list below, which were originally

published in BiometrUm, together with others, are contained in

Tahlesjor Statisticians and ^Mometricians, edited by Karl Pearson
(Cambridge, University Press, 193*4, price 9s. net).

(7d’T)AVExroRT, C. B., Statistical Methods, with especial reference to Bio-
logical Variation

f

New York, John Wiley; London, Chapman k
Hall; second edition, 1904. (Tables of area and ordinates of the*

normal curve, gamma functions, probable errors of the coefficient of

correlation, powers, logarithms, etc.)

(8) Duffell, J. H., “Tables of the Gamma-function,” Biometriha
,
vol. vii.,

1909, p. 43. (Seven-figure logarithms of the function, proceeding by
differences of O'QOl of the argument.)

*(9) Elderton, W. P., “Tables for Testing the Goodness of Fit of Theory to

Observation,” Biometriha, vol. i., 1902, p. 155.

(10) Eveputt, P. F., “Tables of the Teti^ehoric Functions for Four-
fold Correlation Tables,” Biometriha, vol. vii., 1910, p. 437, and vol.

.

viii, 1912, p. 385. (Tables for facilitating the calculation of the cor-

relation coefficient of a fourfold table by Pearson’s method on the
assumption that it is a grouping of a normally distributed table ; cf.

ref. 14 of Chap. XVI.)
(11) Gibson, Winifred, “Tables for Facilitating the Computation of Prob-

able Errors,” Biometriha
,
vol. iv., 1906, p. 385.

(12) Heron, D., “ An Abac to determine the Probable Errors of Correlation
Coefficients,” Biometriha, vol. vii., ^910, p.

r
411. (A diagram giving

the probable error for any number of observations up to 1000.

}

(13) Lee, Alice, “Tables of F{f, v) and BI{r
%
v) Functions,” British Associa-

tion Report
, 1899. (Functions occurring in connection with Professor

Pearson’s frequency curves.
) r

r
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•

' :: 9--. »
(14) Lee, Alice, “Tables of the Gaussian 4

Tail- functions,’ when tbe
4
tail

*

% 4s %ger than the body,” Biometrika
,
vol. x., 1914, p. 208. *

(15) Rhus D, A., “Tables for Facilitating Computation of Probable Errors

of the Chief Constants of Skew Frequency-distributions, ” Biometrika,
vol^vii., 1909-10, p. 127 and p. 386.

(16) Sheppard, W. F., “New Tables of the Probability Integral,” Biometrika,'
vol. ii.

,
1 903, p. 174. (Includes not merely table of areas of the normal

curve (to seven figures), but also a table .of the, ordinates to the same
degree of accuracy.) ; **

;

(17) Sheppard, W. F., “Table of Deviates of the Normal Curve” (with

introductory article on Grades and Deviates by Sir Francis Galton),

Biometrika, vol. v., 1907, p. 404. (A table giving the deviation of

^ the normal curve, in terms of the standard-deviation as unit, for the

^.ordinates which divide the area into a thousand equal parts.)
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APPENDIX II.

SHORT LIST OF WORKS ON THE MATHEMATIC •

THEORY OF STATISTICS AND THE THEORY OF
PROBABILITY.

The student may find the following short list of service, as

supplementing the lists of references given at the ends of the

several chapters, the latter containing, as a rule, original memoirs *

only. The economic student who wishes to know more of j^he

• practical side of statistics may be referred to Mr A. L. Bowley’s
“ Elements ”

(6 below), to An Elementary Manual of Statistics

(Macdonald & Evans, London, 1910), by the same writer (useful

as a general guide to English statistics), and to M. Jacques

Bertillon’s Gours elementaire de statistique (SociSte d’editions

scientifiqfies, 1895: international in scope). Dr A. Newsholme’s

Vital Statistics (Swan Sonnenschein, 3rd edn., 1899) will also be

of service to students of that subject.

The great majority of the works mentioned in the following
r

list, with others which it has not been thought necessary to

include, are in the library of the Royal Statistical Society.

(1) Airy, Sir G. B., On the Algebraical and Numerical Theory of Errors oj

Observations
; 1st edn., 1861 ;

3rd edn., 1879.

(2) Bernoulli, J., Ars conjectandi
,
opus posthumum : Accedit tractatus de

seriebus infinitis, et epistola g'allict scripta de ludo pilae reticularis,

1713. (A German translation in Ostwald’s Klassiker dev exakten

Wissenschaften
,
Nos. 107, 108.)

*

(3) Bertrand, J. L. F., Oalcul des probability
;
Gauthier-Villars, Paris, 1889/

(4) Betz, W. , Ueber Correlation
;
Beihefte zur Zeitschrift fiir ang. Psych.

und psych. Saminelibrschung
; J. A. Barth, Leipzig, 1911. (Applica-

tions to psychology. )

(5) Borel, E., Elements de la thlorie des probabilitis ; Hermann, Paris, 1909.

(6) Bowley, A. L., Elements of Statistics
; P. S. King, London; 1st edn.,

1901
;
3rd edn., 1907.

(7) Brown, W., The Essentials, of Mental Measurement ; Cambridge C Di-

versity Press, 1911. (Part 2 on the^heory of correlation : applications
to experimental psychology.

)

(8) Bruns. H., IVahrscheinlichkeitsrechnung und KolIcldicmassUhre
;

Teiibner, Leipzig, 190§. r
r

300 , /
;

.
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(9) Cournot, A. A., Exposition do la theorie des chances et des probability,

> JH3 -

(10) Ozuber, E., Wahrscheinlichkeitsreefy,img und Hire Anwendung auf
Fehlerausgleichung, Statistik und Lebensversicherung

;

Teuhner,
Leipzig, 2nd edn., vol. i., 1908-10.

(11) De Sio kgan, A., Treatise on the Theory of Probabilities (extracted from
the Encyclopaedia Metropolitan), 1837.

(12) Eldk/rton, W. P., Frequency Curves and Correlation
;
C. k E. Layton,

London, 1906. (Deals with Professor Pearson’s frequency cu»Tes and
correlation, with illustrations chiefly of actuarial interest.)

(13) Feghner, G. T.
,
Kollektvmnasslehre (posthumously published; edited

by G. F. Lipps)
;
Engelmann, Leipzig, 1897.

^14) Galloway, T.
,

Treatise on Probability (republished from the 7th edn.

of the Encyclopaedia Britannica), 1839.

(15) Gauss, 0. F., Mdthode des moindres carrds : Memoires sur la combinaison
des observations

,
traduits par J. Bertrand, 1855.

(16) Johannsen, W.
,
Elements der exalcten Erblichtyitslehre

;
Fischer, Jena,

2*° Ausgabe, 1913. (Very largely concerned with an exposition of the
statistical methods.)

(17) Laplace, Pierre Simon, Marquis de, Essai philosophiq^e sur les

probability 1814. (The introduction to 18, separately printed with
some modifications.

)

(IS) Laplace, Pierre Simon, Marquis de, TMorie analytique des probability
;

* 2nd edn., 1814, with supplements 1 to 4.

(19) Lexis, W., Abhandlangen zur Theorie der Bevolkerungs- und, Moral

-

statistik
;
Fischer, Jena, 1903.

(20) PoincarL, H.
,
Calcul des probability ;

Gauthier*Villars, Paris, 1896.

(21) Poisson, S. I)., Becherches sur la probability des jugements en matibre

criminelle et en mature civile
,
preedddes des regies gdndrales du calcul

des probability, 1837. (German translation by G. PI. Schnuse, 1841.)

(22) Quetelet, L. A. J., Letlres su^ la theorie deg probability, appliqude aux
sciences morales et politzques, 1846. (English translation by O. G.

Downes, 1849.) ~

(23) Thorndike, E. L
,
An Introduction to the Theory of Menial and Social

Measurements, Science Press, New York, 1904. *

(24) Venn, J., The JLogic of Chance : an Essay on the Foundations and
Province of the Theory of Probability with especial reference to its

Logical Bearings and its Application tcrJMoral and Social Science and, to

Statistics; 3rd edn., Macmillan, London, 1888.

(25) Westergaard, H., Die Grundzuge der Theorie der Statistik

;

Fischer.

Jena, 1890.
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ANSWERS
TO, AND HINTS ON THE SOLUTION OF, THE EXERCISES GIVEN,.

CHAPTER I.

26,287 (AB) 887
2,308 (AG) 374
2,853 (BO) 353
749 (ABO) 149

156 (aBC) 179
431 (aBy) 1,249

272 (aBC) 163

759 (aBy) 20,504

1. • N
(A)

(£)

m
2. (ABC)
(ABy)
(ABC)

(ABy)

3. The frequencies not given in the question itself are

—

()

(AB) J07 (AO) 405 {Bf) 525.

() (A By) 22,9S0 (o/if) 13,585 <(0/30) 96,478 (apy) 23,868,495.

(AB)AB)
. Cm (B)

(Aft) "m- (ab) + (ai3) >mnW
•

(g)^, that is -1M>~ —iW.

4.

that is

that is

'• AT
(AB)(A)

R) («)’

(B)-{AB) N-%A)

5. (AB) + [BO)- (B), i.e., the sum ofthe excesses of(AB) and (2?(7) over (A>)/2.

fh 160. Take = husband exceeding wife in first measurement, B =
husband exceeding wife in second measurement, and find (a/3).

CHAPTER II.

1. 80/263 or 304 per thousand.
2. 55/85 or 65 per cent.

3. 32 per cent, and 30 per cent.

4. 117.

5. 108. r
' 8. (1 - %), p<Ci (1 + 2#), i.e., p mustrlie between 0 and

'J (t«
between | (1 -f 2q) and

9. As a hint, remember the condition that—

362

W) or
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ANSWERS, ETC., TO EXERCISES GIVEN. 863*

CHAPTER III.
* >

*

1. Deaf-mutes from childhood per nliflion among males 222 ;
among

females 183 ;
there is therefore positive association between deaf-mutism and

male sex if there had been no association between deaf-mutism and sex, there
would have been 3176 male and 3393 female deaf-mutes.

2. (a) positive association, since (AB)0= 1457.

(b) negative association, since 294/490= 3/5, 380/570= 2/3.

(c) independence, since 256/768 = 1/3, 48/144 = 1/3.
m

X Percentage of Plants above the Average Height.

Parentage Crossed. Self- fertilised.

Ipomsea purpurea

.

. . 86 per cent. 25 per cent.

Petunia violacea . . . 79 „ 17 „
Reseda lufcea . 78 34

Reseda odorata . , . 71 „ 45 „
Lobelia fulgens . . 50 ,,

*
35 „

The association is much less for the species at the end than for those at the

beginning of the list. «

4. Percentage of dark-eyed amongst the sons of dark -eyed fathers 39 per

cent.

Percentage of dark -eyed amongst the sons of not dark-eyed fathers 10 per

cent. "*/

If there had been no heredity, the frequencies to the nearest unit would
have been (AB)

{)
IS, (A&)0 111, («P)

0 121, (a)8)0 750.

5. Percentage of light-eyed amongst the wives of light-eyed husbands 59

per cent.

Percentage of light-eyed amongst the wives of not light-eyed husbands 53

per cent. * »

If there had been no association: (*4i?)0= 298, (^j3)0=225, (ai?)o=143, (aj9)0

= 10S.

6. The following are the proportions of the insane per thousand in

successive age groups — *

In general population : 0*9, 2*3, 4T, 5*7, 6*9, 7*5, 7*7, 6*8.

Amongst the blifcl: 20*1, 16*0, 16*3, 20*7, 18*3, 17*8, 11*4, 5*3.

Note the diminishing association, which is especially clear in the age-group

65—,
and the negative association in the last age-group The association

coefficient gives the values below, which decrease continuously

Association coefficient : +0*92, +0*75, +0*61, +0*57, +0’46, +0*41,

+ 0*20, -0*13.

CHAPTER IV.

{D)jN
(AJJ)I(A)

(PD)0) =• 3*6

(,4&.D)/{Ap) -41 *2

(BJJ)I(B) —42 ‘7

{4b&)/(4B)=&v9

6*9 per cent.

45*0
(A )/N = 6*8 per cent.

(AD)i(lJ) = 44*6
»,

(AP)I(&) - 4*7 „
,

(A$D)l{fiJD) = 54 *9 „

(AB)j(B) -29*2
{ABD)j{BD)— 35*3 „

The above give two legitimate comparisons. The general results are the same

as for the boys, Le. a very small association between development-defects and

3 ulncss amongst those exhibiting nerve-signs, ^as compared with those who do
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not exhibit nerve-signs, or wiflh the girls in general. As the association

amongst those who do not exhibit nerve-signs 'is. quite as high as for Uge girls #>

in general, the “conclusion ” quoted does not seem valid.

2. (1) m (1)

per per per 0 per

thousand. thousand. thousan i. thousand.

(B)/N 3*2 7*5 um'' 0*9 4*0

U&IU) , 14*9 11 *7 4*0 6*3

(BG)I(C

)

38-8 63*0 ! (AC)I(C) 6*6 18*8

(ABO)I(AC) 216 214 (ABC)j{BC) 36*8 63*8

The above give the two simplest comparisons, either of which is sufficient to

show that there is a high association between blindness and mental dewaagtv*’

inent amongst the deaf-mutes as well as in the general population; amongst
the old, the association is, in fact, small for the general population, but well-

marked for deaf-mutes^ This, result stands in direct contrast with that of

Qu. 1, where the association between the two defects A and 1) was much
smaller in the defective universe B than in the universe at large. As previously

stated, no great reliance can be placed on the census data as to these infirmities.

3. If the cancer death-rates for -farmers over 45 and under 45 respectively

were the same as for the population at large, the rate for all farmers 15

—

would be I’ll. This is slightly less than the actual rate 1’20, but the excess

wouid not justify the statement that {
* farmers were peculiarly liable to eancef.

59

It is, in point of fact, due to the further differences of age-distribution that we
have neglected, e.g. amongst those over 45 there are more over 55 amongst
farmers than amongst the general population, and so on.

4. 15 percent.

6. If A and B were independent in both 0 and 7 universes, we would have
(A B) equal to

• 471 x419 151x139 ^

'

%fr +-ir-=874-7.

Actually (AB) only= 3 58. ^Therefore A and B must be disassociated in one or

both partial universes.

9. (1) 68*1 per cent. (2) 42 ’5 per cent. The fallacy discussed in § 2 is

now avoided, and there seems no reason for declining to consider this as evidence
of the effect of expenditure on <#ection results.

10. The limits to are—
y<\{Sar-a?- 1)

subject to the conditions y^>x, y<^Q, y<£2«-l. No inference of a positive

association from two negatives is possible unles* x lies between the limits
*382 . . . ,

-618 . ...
11. The limits to y are :

—

(1) y < ^(6«r - 6x2 - 1

)

>£(aj + fia?
2
),

subject to conditions ^<£0 ,
<£4jc-1, ^>x.

An inference is only possible from positive associations of ABand AC if aCj>

% ;
an inference is only possible from two negative associations if x lies between

*211 . . . „ and *274. . . . Note that x cannot exd^ed J. ^
(2) y <h[§x~ 3a;

2 -1)
> |(2a? -f 3ar),

subject to conditions <^5* - #
*
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No inference is possible from positive associations of AB and BC.
An inference is only possible from negative associations if x lie between
*188 . % and *215 .... Note that x cannot exceed 4.

( 8 ) y< l(6x - 2a? - 1 )

* > |(3a? + 2,-r
2
),

subject to the conditions y<£0, <£5z - 1
,
^>0.

As in (2), no inference is possible from positive associations of A

C

and BO \

an inference is possible from negative associations if lie between *

17 /*. . . .

and ’224 .... Note that x cannot exceed

CHAPTER V.

1.

A, 0*68. i?, 0*36.

T»

CHAPTER YI.

* 1. 1200; 200. 2. 100; 20. 3. 146*25. 4. 216*5.

CHAPTER TIL

2. Mean, 156*73 lb. Median, 154*67 lb. Mode (approx.) 150*6 lb. (Note
that the mean and the median should be taken to a place of decimals further

than is desired for the mode : the true mode, found by fitting a theoretical

’frequency curve, is 1 51 T lb.)
* '*

3. Mean, 0'6330. Median, 0*6391. Mode (approx.), 0*651. (True mode
is G’653.)

4. £35*5 approximately. ,

, 5. (1) 116*0. (2) Means 77*4, 89*0, ratio 114*9. (3) Geometrical means 77‘2,

88*9, ratio 115*2. (4)115*2.

8. (1) 921,507. (2) $16, 963.

7. lstqual, 10s. 6fd. 2nd qual. 9s. 2-|d. #>

8. n.p. If the terms of the given binomial series are multiplied by 0, 1, 2, 3

. . . ,
note that the resulting series is also a binomial when a common factor

is removed, [The full proof is given in Chapter XV. § 8.]

CHAPTER VIII.

2. Standard deviation 21*3 lb. Mean deviation 16*4 lb. Lower quartile

142*5, upper quartile 168*4; whence $= 12* 95. Ratios: m.d./s.d. =0*77,

Q/s.d. = 0*61. Skewness, 0*29.

3. Approximately lower quartile =£26*1, upper quartile=£54 *6, ninth

decile= £94.

5. (1) J/= 73’2, <r= 17*3. (2) >/=73*2, <r = 17*5. (3) Af= 73 *2, <r = l$‘0.

(Note tiat while the mean is unafected in the second place of decimals, the

standard deviation is the higher the coarser the grouping.)

6. \/n.pq. The proof is given in Chapter X V. § 6.

• » 7. The assumption that observations are^ evenly distributed over the
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intervals does not affect the sunt of deviations, except for the intefval in which
the mean or median lies : for that interval the sum is n2 (0*25 + d

2
), hence the

entire correction is . * #

d(n
x - + w2( 0 25 + d~).

In this expression d is, of course, expressed as a fraction of the ola£>-interval,

and is given its proper sign. Notice that the % and % of this question are

not the same as the iVj and Ar2 of § 16.

CH APTER TX.

1. «r;K
= 1 '414, <jy= 2 *280, r= + 0 *81. X= 0*5F+0*5. Y~VZX+V^*f»

2. Using the subscripts 1 for earnings, 2 for pauperism, 3 for out- relief ratio,

Mx~5'79, 0-3= 3*09 : ru~ -0*13, r
2i}
= + 0*60.

CHAPTER XI.
•

1. 1*232 per cent, (against 1*240 per cent.) : 2*556 in. against 2*572 in.

2. The corrected standard-deviation is 0*9954 of the rough value.

3^ Estimated true standard-deviation 6*91: standard-deviation of fluctua-

tions of sampling 9*38. (The latter, which can be independently calculated,

is too low, and the former consequently probably too high. Of. Chap. XIV.
§ 10.)

4. 0*43.

5. 58 per cent.

6. tr2
2
/V(o*i

8 + cr.
2
2
)(or

2
2+ <r3

2
). ® #

7 1 # 6
° v«v+&v*

8. 0*30. 9

The others may be written dpwn from symmetry.
10. (1) No effect at all. (2) If the mean value of the errors in variables is

d, and in the weights e, the value found for the weighted mean is

—

The true value + d-r. <rrvw=r?~-

—

v
.

w(w + e)

If r is small, d is the important term, and henc? errors in the quantities are

usually of more importance than errors in the weights. If r become consider-

able, errors in the weights may be of consequence, but it does not seem probable

that the second term would become the most important in practical cases.

11. C= 2/3.

12. Q= 0*77.

CHAPTER XII.
*

1* 9*12*3= +0*759, 9*13*2 == +0*097, 9*23*1— “$*436. •

<ti-23=2*64, (r2*i3 = 0*594. <r3*i2= 70*l.

A
1= 9*31 +3*37 X- 0*00364 X3.
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2. ***„= 4*0*680, 5*13.24= +0*803, r„. 8

367

= + <*397.

- 0’433, ^24.33= ™ 0*5537 r34.32= -~ 0*149.

^4^9*17, <r2 .
1;

.4= 49
*2, <rg. 3 24

= 1
2

*5. gPVmr H05*4.
A

3 — 53-1-0*12/ A„-r 0*587 Wa -I- 0 *03 4 5 AT4 .

3. The .correlation of the jpth order is r/(l +pr), Hence if r he negative, the
correlation of order n~ 2 cannot be numerically greater than unity and r

cannot exceed .(numerically)' l/(n ~ 1).

4* ^
5.

,

r12<3= - .1, 5
*i:}.

8'=+2s*i= + '!•

CHA PTER XIII.

1. Theo. M= 6, <r= 1*732 : Actual Af=6T16, 0*= 1*732.

2. (a) Theo. M~ 2*5, <r= 1 * 1 1 S : Actual if== 2 *4 8, <r= l*14.

(5) „ 4f=3, <r= 1’225 : „ Jf= 2*97, <r^l *26.

(r) ,, JJ/=3*5, /r== 1*323 : ,, Jf=3*47, <r= l*40.

3. Theo. Jf= 50, <r = 5 : Actual. if=50. *11, <r = 5**23.

4. The standard deviation of the proportion is 0*00179, and the actual

divergence is 5*4 times this, and therefore almost certainly significant.

• 5. The standard deviation of the number drawn is 32, and the actual

difference from expectation 18. There is no significance.

67y/= l~<r2/ilf, n~Mjp :;?=0*510, %= 12*0 :p= 0*454, ^=110*4.
8. Standard deviation of simple sampling 23*0 per cent. The actual

standard-deviation does not, therefore, seem to indicate any real variation, but

only fluctuations of sampling.

9. Diiference from expectation 7*5 : standard error 10*0. The difference

might therefore occur frequently as a fluctuation of sampling.

10. The test can he applied either by th»f«*mulse of Case II. 017 Case III.

Case II. is taken as the simplest. §, a
(a) (AB)/(B)~69*1 per cent.: (Hj3)/(j3) = 80*0 per cent. Difference 10*9

percent. (A)/N~ 71 T percent, and thence e12
=12*9 per cent. The actual

#
difference is less than this, and would frequently occur as a fluctuation of

simple sampling.

(h) (AB)I{B)— 7Q'I ]ier cent.
:
(Hj3)/(j3)= 64*3 per cent. Difference 5*8 per

cent. (H)/Ar=67‘6 per cent, and thence e12«3*40 per cent.' The actual

difference is 1 *7 times this, and might, rather infrequently,, occur as a fluctua-

tion of simple sampling.

CHAPTER XIV.

1. Row.
•

Group of Rows. (Tj).

1 3*1 5, 6, and 7 1*8

2 2*1 8, 9,10, and 11 1*6

3 1*7 12, 13, and 14 1 2

4 2*7 15 and upwards 1*1

ffP is given in units per 1000 births, as s and s0.

2. $q= 7*0*2, and <^=2*5 units.

3. as if the clftnce of success were p in all cases (but the mean is

n/2not%4 #

4. Mean number of deaths per annum= <r0
2 == 680,

-a
2 =566, 582. r= 0*000029.

0
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CHAPTER XV.

(1)

(2)

(3)

0
**1

7 792

1 12 8 495

2 66 9 220

3 220 10 66

4 495 11 12

5 792 12 1

6 924
Total, 4096

0 459*4 5 116*4

1 1102*6 1 6 27*2

2 1212*8 7 4*7

3 808*6 8 *6

4 363*9

Total, 4096*2

0 .192

1 288
2 144

3 24
' ’

• v -

Total, 648

$ •

2. The frequency of r successes is greater than that of r-1 so long as

r< 'tip Hhp

:

if top is an integer, r—np gives the greatest term and also the mean.
3. This follows at once from a consideration of the Galton-Pearson apparatus,

4. Binomial* © Normal curve.

# 1 » 1*7

10 10*5

45 42*7

%20 116*1

210 211*5

252 258*4 .
210m 211*5

etc. etc.

5. The data are M—68 *855, <r= 2
*56

, yQ= 155 *8.

(1) United Kingdom—direct 1*75, from standard-deviation 1*78.

(2) Cambridge students—direct 1 *88, from standard-deviation 1 *73.

7. 70*6 per cent. 8. 27 per cent. #
9. (1) In a 12*4 per cent,, b 1*0 percent, of the trials, assuming normality,

but the assumption is hardly quite valid. (2) a about 13 times in 100,000

trials
;
b practically impossible, being a deviation of over 7 times .

the standard
error.

10. 853. 11. Mean 74*3, standard-deviation 3*23.

CHAPTER XVI. .

3. From equations (10) and (11) replace oq and by 2j and X2 in equation

(9)* Regarding this as an equation for r, note that ,'r
2

is a maximum when
tan 2 6 is infinite, or 0— 45°.
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% C
4. In fig. 4>0, suppose every horizontal array* to be given a slide to the right

until its mean lies on the vertical axis through the mean of the whole distrilW
Mion : hen suppose the ellipses to be squeezed in the direction of this vertical

axis until they become circles. The ordinal quadrant has now become a

sector with an angle between one and two right angles, and the question is

solved on determining its magnitude.

CHAPTER XVII.

1. Estimated frequency 1512, standard error 0*29 lb. 2. Lower Q,

frequency 1472, standard error 0^26 lb.
;
upper Q, frequency 1116, standard

^oa£r0’34lb. 3. 0T8 lb. 4. 0’24 lb., 17 per cent, less than the standard
erronSf the median. 5. 0 0196 in. or 0*76 percent, of the standard-deviation :

the standard error of the semi-interquartile range is 1*23 per cent, of that

range.
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,
208 .
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Airav^def., 161 ;
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of
5

1”7 204-205, 26b- ^3/ ,
m

• normal correlation ,

319-321.

Association, generally, A>-.>9, dO,

28 ;
degrees of, 29-30 ;

testing

order frequencies, 85-30 ;
co-

efficients of, 37-39; illusory or

misleading, 48-51 ;
total possible

number of, for n attributes, 54-56

;

case of complete independence,

56-57 ;
use of ordinary correlation-

coefficient as measure of association,

216-217 ;
Pearson’s coefficientbased

on normal correlation (refs.), 40,. •

333 ;
refs., 15, 39-40/333.

/
-

Association, partial, generally, 4-~.»y
,

•

the problem, 42-43 ;
total and par-

tial, def., 44; arithmetical treat-

ment, 44-48
;
testing, in ignorance

#

of third-order frequencies, ol-o4 ;

.
refs> 57,

^ 7 .

examples: deaths and sex, 32-

33 ;
deaths and, occupation,, 52-o8 ;

deaf mutism and imbecility ,
S3- 34 ;

eye-ci^our of father and son, 34-3o
; ^

eye-colour of grandparent, -parent,

and offspring, 46-48, 53- o4 ;
colom

and prickliness o f Dalimi i ru its, o 6 -

-

37 ;
defectsin school-children ,

4 j-4 o.

Asymmetricalfrequency -distributions,

90-102; relative no turns » nean,

median, and mode in, 121-1 2*2,

diagrams, *1 13-1 1 4. Sec also fre-

(U^ncy- distributions. m
• : > i . (.‘..n.itiATi™./ Ntrihtt*
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def., 7; flotation, 9-1 0, 14-15;
positive and negative, 10 ;

order and
aggilgatf of classes, 10-11

;
ulti-

mate classes, 12
;
positive classes,

13-14
;
.consistence of class-fre-

quencies; 17-24 (see Consistence)

;

association of, 25-59 (^Associa-
tion); sampling of, 254-334 (see

Sampling of attributes). •

Averages, generally, 106-132
; def.,

107
;
desirable properties of, 107—

/ 108
;

forms of, 108; average in

sense of arithmetic -mean, 109*

129-1 30. See Mean, Median,
Mode.

Axes, principal, in correlation, 321-
322.

;
;

Barlow, P., tables of squares, etc.,

67. Kefs., 357.

Barometer Heights, table, 96 ;
dia-

>
gram, 97 ;

means, - medians, and
modes, 122.

Baftsinan, H.
,

refs. , law of small

chances, 273.

Bateson, W,
,
data cited front, 37.

Beeton, Miss M.
,
data cited from, 78.

Bernoulli, J., refs.
,
A rs Conjectandi,

360.

Bertillon, J., ref.
/ (Jours tUmentaire

do statistique,'<6, 359.

^Bertrand, !. L. F., refs., Calml desr*

probabiliUs, 360.

Betz, W., ref.
,
Ueber Korrelation, 360,

• Bias in sampling, 261-262, 279-281*

336-337, 343, 353.

Bielfeld, Baron J. F.-v#n, use of word
“ statistics,” 1.

Binomial series, >291-300
;
genesis of,

in sampling of attributes, 291-293
;

calculated series for different values

ofp and n, 294, 295 ;
experimental

illustrations of, 258, 259 (qu. 1

and qu. 2), 274 ;
graphic method of

V forming a representation of series,

295-297
;

mechanical method of

forming a representation of series,

297-299
;

refs., 313
;

direct deter-

mination of mean and standard-

deviation, 299-300 deduction of

normal curve from, 301-302
;

refs.,

• 314. r .
* _

Blakeman, J.
,
refs.

,
tests for linearity

of regression, 209, 354 ;
probable

r error ofcontingency coefficient, 354,

Boole, G.
,
refs., Laws of Thought, 23.

Boot!?, Charles, on pauperism, 193,

195.
'

Bor^l, E., refs.
,
JTMorie des proba-

MliUs, 360.

Bortkewitsch, von, refs., law of
small chances, 273.

Bowley, A. L., refs., effect of errors

on an average, 356 * on sampling,

354 ;
Measurement of Groups and

Series
>
&54 ;

Elements of Statistics,

360 y Elementary Manual of Sta-

tistics, 360.

Bravais, A., refs., correlation, 188, '832,

British Association, data cited from,

stature, 88 : weight, 95, see Stature,

Weight
;

Reports on index-num-
bers ;

refs., 130-131. Address by
A. L. Bow&y on sampling, 354.

Brown, J. W., refs., index correla-

tions, 226, 252.

Brown, W., refs., effect T>.f experi-

mental errors on the correlation-

coefficient, 226 ;
The Essentials of

Mental Measurement, 360. *

Bruns, H., refs., W%hrscheinUch-

keitsrechnung und Kollekiimiass-

lehre, 360.

. Cave, Beatrice M., correlation dif-

ference method, 198 ;.refs., 208.

CS.A Browne Gave, F. E. ^correlation

difference method, 198 ;
refs., 208.

Census (England and Wales), tabu-

lation of in tirmities in, 14-15
;
data

as to infirmities cited from, 33-34
;

classification of occupations, as

example of a heterogeneous ^classi-

fication, 72; classification of ages,

80, and refs., 105 ; data as to ages

of husbands and wives cited from,

159.

Chance, in sense ofcomplex causation,

30; of success or failure of an
event, 256.

Chances, law of small, 265-266
;
refs..,

273. ;
-

Charlier, C. V. L., refs., theory of

frequency curves, resolution of a

compound normal curve, 314, 815.

Childbirth, deaths in, application of

theory of sampling, 282-284.

Class, in theory of attributes, 8 ;

class-symbol, 9 ; class-frequency,

10
;
positive and negative classes,

10 ;
ultimate classes, 12 ;

order of

a class, 10.
‘v . V'

;*



*

*372 * THEORY OF STATISTICS,

' • •

Classification, generally, 8; byJieho-
• tomy, def.

, 9 ;
mani fold, 60-74, 76 ;

homogeneous and heterogeneous,

71-72 ;
of a variable for frequent •

distribution or .correlation table,

76
,
80-81, 157, 164,

^

.

Class-interval, def,, 70 ;
choice of

magnitude and position, 79 SO

;

desirability of equality of intervals,

76, $3™83
;
influence of magnitude

on mean, 113-114, 115, 116; on

stainlard-deviation
,
1 40, 21 *2.

Cloudiness at Breslau, frequency dis-

tribution, 103 ;
diagram, 104.

Coefficient, of association
,
37-3 9 of

contingency, 64-67; of variation,

149 ;
standard error, 351 ;

of cor-

- relation, see Correlation.

Consistence, of class-frequencies for

attributes, generally, 17-24
;

def.
,

18-19
;
Conditions, for one or two

attributes, 20 ;
for three attributes,

21-22 ; refs., 23. . r

Comistence of correlation-coefficients,

250-251,

Contingency.. tables, def., 60 ;
treat-

ment of, by elementary methods,
61-63

;
isotropy, 68-71, 328-331.— coefficient of, 64-67

;
applica-

tion to correlation tables, 167, (qii.

‘ 8) 189; standard error of(refs. ), &>!t.

Contrary classes and frequencies (for

attributes), 10 ;
case of equality of

contrary frequencies (qiL 6, 7, 8),

16; (qu, 8), 24; (qu. 7,*, 9), 59.

Correction of death-rates, etc.
,

for

age and sex-distribution, 223-225
;

refs. , 226. • .— of standard -deviation for group-

ing of observations, 211-212
;

refs,

(including correction of moments
•generally), 225.

-—— of correlation-coefficient for

errors of observation, 213-214;
refs., 225-226.

Correlation, generally, 157-253 ; con-

. struction of tables, 164 ; represen-

tation of frequency-distribution, by
surface, 165-167; treatment of

table by coefficient of contingency,

167 ;
correlation-coefficient, 170-

174, def. 174, direct deduction
231-233; regressions, 175-177,
def. 175; standard-deviations of

;arrays, 1 77,204,205; calculation o

f

coefficient for ungrouped data,
.
177-

:

181, for a grouped taWto, 181-188 ;

between moveniontso f twovariables,

difference method, 1 97$19$, liuc-
#

tuation lncfcln id
,

1 99-201
;
elerncu

-

tarymethods for cases of non -li nea

r

regression, 201 -202 ; rough methods

for estimating coefficient, 202-204
;

eomdatio'n* ratio, 204 207, 252

;

effect of errors of observation <m

the coefficient, 213-214
;

correla-

tion between indices, 215-216 ;

coefficient for a fourfold table,

direct, 216-217, on assumption of _

normal correlation ( Pearsons
efficient) (refs.), 40, 383 ;

for all

possible pairs of A7 values, 217-

218 ; correlation due to hetero-

geneity of material, 218-219 ;
effect

of adding uncorrelated pairs to a

given table, 219-220 ; application

to theory of weighted mean, 221-
223"

; correlation in theory of sam-
pling, 271, 286-289, 342, 849-3.50

;

standard error of coefficient, 8§2.

Refs. 188, 208-209, 225-226. For
Illustrations,Normal, Partial

,
Ratio,

see below.

Correlation, Illustrations and Ex-
amples, correlation between •—
Two diameters of a shell {Peden),

158
;
constants (qu, 3), 189.

• Ages of husband and wife, I%q;
diagram, 173 ;

constants (qu. 8),

189.

Statures of father and s'6n, 160 f
diagrams, facing 166,174.; constants

(qu. 3), 1M ;
correlation -ratios,

206-207 ;
testing normality of table,

322-328
; diagram of diagonal dis-

tribution, 325 ;
of contour-lines

fitted with ellipses of normal sur-

face, 327.
,

Fertility of mother and^daugh ter,

161, f»5-196
;
diagram, 175 ;

con-

stants (qu. 3), 189.

Discount rates and percentage of

reserves on deposits, 1 62
.;
diagram,

facing 166.

Sex -ratio and numbers of births

in different districts, 163, 175

;

diagram, 176 ;
constants (qu, *»),

189; correlation - ratios,^. 207 ;

standard -deviations of arrays and
comparison with theory of samp-
ling, (qu. 7) 275 and (qu. 1) 289.

Earnings of agricultural labour-
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ers, paupirism and out-relief, 177-
181; constants, (qu. 2) 189, ‘239

;

corMat^on-ratios, 207
;

treatment
by partial correlation, 239 241

;

geometrical representation,245-247.
Qld-%epauperi.sm and out-relief,

182-185.

Changes in pauperism, out-relief
,

proportion of old and population,
192-195

;
partial correlation, 241-

245.

Lengths ofmother- and daughter-
frond in Lemna minor

,
185-187.

Weather and crops, 196-197.
Movements of infantile and

general mortality, 197-199.
Movements of marriage-rate and

foreign trade, 199-201.

Correlation, normal, 317-334
;
deduc-

tion of expression for two variables,

318-319
;
constancy of standard-

deviation of arrays and linearity

of regression, 31 9-320
;

contour
Mnes, 320-321

;
normality of linear

functions of two nonnally distri-

buted variables, 321
;

principal

axes, 321-322
;
testing for normality

of correlation table for stature,

322-328
;
isotropy of normal cor-

relation table, 328-331
;

outline

of theory for any number of

variables, 331-332
;
coefficient fo*

a normal distribution grouped to

fourfold form round medians
(Sheppard’s theorem), (qu. 4), 334 ;

applications to theory of qualitative

observations (refs. ^ 333. Refs.,

332-333.
——

•
partial, 229-253

;
the pro-

blem, partial regressions and cor-

relations, 229-231
;

notation and
definitions, 233-234

;
normal equa-

tions, fundamental theorems on
product-sums, 234-235 signifi-

cance of generalised regressions

and correlations, 236 ;
reduction

of standard-deviation, 236-237, of

regression, 237-238; of correlation,

238 ;
arithmetical treatment, 238-

245 representation by a model,

4J45-247
;
coefficient of %-fold cor-

relation, 247-249
;

expression of

correlations and regressions in Hrms
of those of higher order, 249-250

;

consistence of coefficients, 250-251 ;

•fallacies, 251-252
; limitations in

37$

% •

inlferpretation of th e partial correla-

tion-coefficient, partial association

qpd partial correlation, 252 ;
par-

tial correlation ' in case of normal
distribution of frequency, 331-332.
Iiefs., 252-253, 332-333.

Correlation ratio, 204-207 ; standard
error, 352 ;

refs., 209 ;
partial, 252,

and refs*, 252.

Cosin, values of estates in 17T5, 100.

Cotsworth, M. B., refs., multiplica-

tion table, 358.

Cournot, A. A., refs., theory of

probability, 361. -

Crawford, G. E., refs., proof that

arithmetic mean exceeds geometric,

130.

Crelle, A. £., refs., multiplication

table, 358.

Crops and weather, correlation, 196—

197.

Cunningham, E.
,
ref.,omega-functions,

314.

Czuber, E., refs., JVahrscheinUch-

keitsrechnung, 361.

Daebishire, A. D.
,
data cited from,

128, 265. Refs.., illustrations of

correlation, 188, 273.

Darwin, - Charles, data cited from,
* £89-270.

Datura, association between colour

and prickliness of fruit, 37, 38,

(qu. 10^275.
Davenporu, C. B., data as to Pecten

cited from, 158. Eefs., statistical

tables, 358.

Deaf-«utism, association with im-

becility, 33-34, 38 ;' frequency

amongst offspring of deaf-mutes,

table, 104.

Deaths, death-rates, association with

sex, 32-33
;
with occupation (partial

correction for age - distribution),

52-53
;

in England and Wales,

1881-1890, table, 77 ;
from diph-

theria, table, 98, diagram, 97 ;
in-

fantile and general, correlation of

movements, 197-199 ;
correction of,

for age and sex-distribution, 52-53,

2*23-225, refs., 226 ;
applications

of theory of sampling —deaths from

accident, 265-288, deaths in child-

birth, 282-284, deaths from ex-

plosions in mines, 287-288
;

in-

applicability of the theory of simple



<674 THEORY OF

-• f

sampling, 260-261, 282-284*285-

*286, 287-288.

Deciles, 150-152 ;
standard error% of,

j

387-841.

Defects : in school children, assoeia-
j

“Taon of, 12, 45- 46, refs., 15 ;
census

tabulation of, 14-15.

De Morgan, A., refs., Formal Logic,

23 ; Theory of Probabilities, 361.

Deviation, mean, 134
;

generally,
j

144-147 ; del"., 144 ;
is least round

the median, 144-145
;

refs., 154 ;

calculation of, 145-146, (qu. 7)

155-156
;
comparison of advantages

with standard-deviation, 146
;

of

magnitudewith standard-deviation,

146-147
;
of normal curve. 304,

Deviation, quartile. S<& Quartiles.

.root-mean -square. Bee Devia-

tion, standard.

standard, 134-14.4 ; def. . 134
;

relation to root-mean -square devia-

tion from any origin,. 134-135

;

i% tlie least possible root-mean^
square deviation, 135 ; little affected

by small errors in the mean, 135;
calculation for ungrouped data,

135-137, for a grouped distribu-

tion, 138-1 41 ; influence of group-

ing, 140, 211-212 ;
range,ofsixtimes

the s.d. contains the bulk of «fcbfc

observations, 140-142, ; of a

series compounded of others, 142-

143
;

of iY consecutive natural

numbers, 143
;
of rectangle, 143

;

of arrays in theory of correlation.

177,' 204, 205, 319-320
;
of general-

"ised deviations (arrays), 23^ 236-

237 ;
other names for, 144 ;

of a sum
or difference, 210-211; effect of

errors of observation on, 211
;
of an

index, 214-215
; of binomial series,

299-300. For standard-deviations

of sampling, see Error, standard.

De. Tries, H., data cited from, 102.

Dice, records of throwing, 258-259,

(qu. 1, 2, 3) 274; testing for

significance?, of divergence from
theory, 267 ;

refs., 273.

Dickson, J, I). Hamilton,, normal
correlation surface, 328. Refs.,

normal correlation, 833.

Difference method, in correlation, 197-

199; refs., 226, 252. ’

.

Diphtheria, ages at death from, table,

98 ; diagram, 97.

STATISTICS,'

Discounts and reserves to American
.
banks, table, 162 ;

diagram, facing

166.. t
* #

Dispersion, measures of, 107, 183-

156 ; unsuitability of range as

a measure, 123
;

relafhm, 149
;

refs., 154. Bee Deviation, mean;
Deviation, standard ; Quartilcs.

Distribution of Frequency, Bee Fre-

quency-distribution.

Duckweed, correlationbetween mother-

and daughter-frond, 1 85-187.

Duffell, J. IL, ref., tables of gamma-
function, 358. #

Duncker, G., relation between geo-

metric and arithmetic mean (qu. 9),

156..

Earnings of agricultural labourers:

calculation of stun dard -deviation,
• 135-137

;
mean deviation, 145 ;

quartiles, 147 ; correlation with
pauperism and out-relief, 177-181,

constants, (qu. 2) 189, 289; dia-

gram, 180 ;
by partial correlation,

289-247 ; diagram of model; 246.

Edgeworth, F. Y., terms for measures

of dispersion, 144; dice -throwings

(Weldon), 258
;
probable error of

median, etc., 344. Eofs.
,

Index-

numbers, 130-131; correlation*

• 1 88 ,
2 52, 333 ;

law of error (normal

law), 273, 314 theory of sampling,"

probable errors, etc., 273, 354;;.

dissection of normal curve, 315..,
*

Elderton, W. Palin, refs., calculation

of moments,#! 54 ;
table of powers,

.

358 ;
tables for testing fit, 354,

358; Frequency Curves and Cor-

relation, 154, 361. -

Error, law of
;
errors, curve of. Bee

formal curve.
. mean, 144.

•

nufen square, 144,
—— of mean square, 144.
—— probable, in sense of semi-inter-

quartile range, 147 ;
in theory of

sampling, 310-811. For general

references, see Error, standard,

standard, def;, 267
;
ofnumber or

proportion of successes in % events,

256-257; ffrhen numbers in samples
vwy, 264-265 ; when chance of

success or failure is small, 265-
266 ;

of percentiles (median, quar-
, tiles, etc.), 337-341

;
of arithmetic
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mean, 34#-350 ; of standard-devia-
tion and coefficient Of variation,
351* coefficients of correlation
and regression, 352; of correlation-
ratio and test for linearity of re-

gression, 352 ;
refs., 273, 280, 354-

355. See also Sampling, theory of.

Error, theory of. See Sampling,
theory of.

Estates, annual value of. See Value.
Everitt, P. F.

,
refs., tables for cal-

culating Pearson’s coefficient for a
fourfold table, 358.

Exclusive and inclusive notations for.

statistics of attributes, 14-15.

Explosions in coal-mines, deaths from,

as illustrating theory of sampling,
288.

Eye-colour, association between father

and son, 34-35, 38, 70-71
;
associa-

tion between grandparent, parent,

arid child, 46-48, 53-54
;

con-

tingency,with hair-colour, 61, 63,

*66-68
;
non-isotropy of contingency

table, for father and son, 70-71.

Falkneb, K. P., refs,, translation- of

Meitzen’s Theorie der Statistik, 6.

Fallacies, in interpreting associations
•

#

—theorem on, 48-49, illustrations,

'49-51
;
owing to changes of classi-

fication, actual or virtual, 72;
interpreting correlations-—'tf spuri-

• ous” correlation between indices,

215-216
;
correlation due to Hetero-

geneity of material, 218-210
;
dif-

ference of sign of total and partial

correlations, 251-252.

Fay, E. A.
,

data cited from Mar-
riages of the Deaf in America, 10 4*

Fechner, G. T., refs., frequency -dis-

tributions, , averages, measures • of

dispersion, etc., 129, 154 ;
Kol-

lektivmasslehre
, 129, 314,•861.

Fecundity of brood-mares, table, 96 ;

diagram, 94 ;
mean, median, and

mode, (qu. 3) 131 ;
inheritance.

• (ref.), 208, 2*26.

Fertility of mother and daughter,

correlation, 161, 195-196
; dia-

* gram, 175 ; constants, (qu. 3) 189 ;

ref 208, 226. •

Filon*L. N. G., ref., probable errors,

354.

Fisher, B. A., refs., errors of sampling

* in correlation coefficient, 3 5 4.

.
% *

Fit df a theoretical to an actual fre-

quency-distribution, testing (ref*),

^
|15 ;

tables for, 357.

Fluctuation, measure of dispersion,

144. ...
J

Fountain, H., ref., index-numbers of

prices, 131.

Frequency of a class, 10, 76.

Frequency-curve, def., 87 ;
ideal forms

of, 87-105
;

normal curiae (q.v . ),

301-313 ; refs., 105, 314.

Frequency-distributions, 76 ;
forma-

tion of, 79—83
;
graphic represen-

tation of, 83-87 ;
ideal forms-—

symmetrical, 87-90, moderately
asymmetrical, 90—98, extremely

asymmetrical (J-shaped), ' 98-102,

U-shaped,^102-1 05 ;
binomial series

291-300; hypergeometrical series

. (ref.), 289 ;
normal curve, 301-

313 ;
theoretical fonns^refs. , 289,

314. See Binomial series ;
Normal

curve ; Correlation, normal.

,
illustrations : of death-rates in

England and Wales, 77 ;
of ages at

death of certain women, 78 ; of stig-

matic rays on poppies, 78 ;
ofannual

values of dwelling-houses in Great

Britain, 83; of head-breadths of

Cambridge students, 84 ;
ofstatures

* «f males in the U.K., 88, 90 ;
of

pauperism in different districts of

England and Wales, 93 ; ofweights

of males in the U. K.
,

95 ;
of

fecundity of brood mares, 96 ;
of

barometer heights at Southampton,

96 ;
of tges at death from diphtheria,

98* ofannual values of estates, 100 ;

of petals in Ranunculus bulbosus
,

102 ;
of degrees of cloudiness at

Breslau, 103 ;
of percentages of

deaf-mutes in offspring of deaf-

mutes, 104, See also Correlation,

illustrations and examples.

Frequency-polygon, construction of,

84.

Frequency-surface, forms and ex-

amples of, 164-167; diagrams,

166, facing 166 ;
normal, diagram,

166. See Correlation, normal.

Gabaglio, A., ref.
,

Teoria, generate

della statistical 6. ,t .

Galloway, T., ref., Treatise on Pro-

bability, 361.

Galtori, Sir Francis, Hereditary
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Genius, 3 ; frequency»distriIfetion

,of consumptivity, 104 ; grades and
percentiles, 150, 152 ; regress^m,

176; Galton
,
sfunction(correlatio»,

.
coefficient), 204 ;

binomialmachine,

299
;

normal correlation, 328
;

data cited from, 34, 46, 70. Refs,

—geometricmean, 1 30 ;
percentiles,

154 ;
correlation, 188, 332; cor-

relation between indices, 226 ;

binomial machine, 313; Natural
Inheritance

, 154, 313, 332.

-Gau%s, C, F., use of term “ mean
error,” 144. Refs., normal curve,

314 ;
method of least squares, 361.

Geiger, H.
,
refs., law of small chances,

269.

Geometric mean. Bee cMean, geo-

. metric.

Geometric (logarithmic) mode, 128.

Gibbs, J,* Willard, Principles, of
Statistical Mechanics, 4.

Gibson, Winifred, refs., Tables' for

ccmputing probable errors, 354, 358.

Grades, 152, 153. -

Graphic method, of representing fre-

quency distributions, 83-87 ; of

, interpolation for median or per-

centiles, 118, 151-152 ; of repre-

senting correlation between two
variables, 180-181

;
of estimating

eorrelatioi# coefficient, 203^20 4 ; of

forming one binomial polygon from
another, 295-297.

Graunt, John, ref., Obser&tions on
the Bills of Mortality

,
6.

Gray, John, data cited from, 270.

Greenwood, M., refs., index correla-

tions, 226, 252 ; errors of sampling
(small samples), 289

;
inoculation

statistics and association, 40.

Grouping of observations to form
frequency-distribution, choice of

class-interval, 79-80
;
influence on*

mean, 113-114, 115, 116 : influence

on standard-deviation, 140,212.

Haiu-colouu : and eye-colour, ex-

ample of contingency, 61, 63, 66-
67 ;

non-isotropy, 68, 69 ;
theory of

sampling applied to certain data,

270-271, 272.

Harmonic mean. Bee Mean, harmonic.
Harris, J. A., refs., short method of

calciilatingcoefficieritof correlation,

209 ; intra-class coefficients, 209.

#

Head-breadthsof Canibridjgestudents,
table, 84. ;

diagram, 85.

Helguero, F. de, refs.
,

^iss^cting
*

compound normal curve, 815.

Heron, D.
,
refs., association

,
10 ;

re-

lation between fertility Snd- social

status, 208 ;
defective physique and

intelligence, application of correc-

tion for age-distribution, etc., 226 ;

abac giving probable errors of

correlation coefficient, 354, 358 ;

probable error of a partial correla-

tion coefficient, 354.

Histogram, construction of, 84v
Hollis, T., cited re Coshes Names of

the Roman Catholics, etc,

,

100,

Hooker, R. H., correlation between
weather and crops, 196 ;

between
movements of two variables, 200,

201. Refs., correlation between
movements of two variables, 208 ;

weather and. crops, 208, 253 J

theory of partial correlation, 252.

Houses, inhabited and uninhabited,
in rural and urban districts, 61-

62 ; annual value of, table, 83':;

median, (qu, 4) 131
;

qnartiles,

(qu. 3)155.
Hull, C. H., ref% The Economic

Writings of Sir William Petty,

together with the Observations on

* the Bills of Mortality more probably
by Captain John Graunt, 6,

Husbands and wives, correlation be-

tween ages, table, 159
;
diagram,

173 ; constants, (qu. 3) 189.

Hypergeometricil Series, ref., 289.

Illusory associations, 48-51.

Imbecility, associations with deaf-

mutism, 33-34,'38. -

Inclusive and exclusive notations for

statistics of attributes, 14-15.

Independence, criterion of, for attri-

butes, 25-28
;
case of complete, for

attributes, 56-57
;
form of contin-

gency or correlation table in case

of, 71.

Index-numbers of prices, def., 126 ;

use of geometric mean for, 126*-

127 ; use oF harmonic mean, 129 ;

re%, 130-131.
*

Indices, correlation between, 21 5-

216 ; reik, 226, 252.

Infirmities, census tabulation of, 14 t>
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15 ; association between deaf-

mutism and imbecility, 33-34, 33.

i nteriii%dig£e observations, in a
frequency-distribution, classifica-

tion of, 80-81 ; in correlation table,

164,
*

Isotropy, def., 68
;
generally, 67-71

;

of normal correlation table, 328-
331; refs., 73.

Is&erlis, L., refs.
,
partial correlation

ratio, 252
;
conditions for real sig-

nificance of probable errors, 354.

*Jacob>vS. M., ref., crops and rainfall,

208, 226.
'

Jevons, W. Stanley, use of geometric
mean, 127. Kefs., system wof

numerically definite reasoning
(theory of attributes), 15 ;

index-
numbers, J30; Pure Logic mid
other Minor Works

, 15 ;
Investiga-

? turns in Currency and Finance,
130.'

Jolmnnsen, W., Eleniente der exaJcten

Erhlicltkeilskhre, 361

.

John, V., refs., Geschichte der Sta-

listik, 5.

J-shaped frequency-distributions, 98-
102.

Kaeteyn, J. (I, refs., Skew Fre-

quency-curves in Biology and Stai*
isiics, 130, 314,

Kick of a horse, deaths from, follow

-

ing law of small chances, 265-266.
"

King, George, refs., graduation of

age statistics, 105. ’*

Labourers, earnings of agricultural.

See Earnings.

Laplace, Pierre Simon, Marquis de,

probable error of median, 344.

Kefs., normal curve, 314; mean
deviation least about the Median,.

154 ;
TMorie cmalytique des pro-

hahilif.es
, 154, 354, 361

;
Essai

philosophiquc , 361.

Lannor, Sir J., use of word “ statis-

tical,” 4,

Lee, Alice, data cited from, 96, 122,

>)0, 161. Kefs., inheritance of

fertility and fecundity 208, 226 ;

tables of functions; 358, 359. *
Lem.na minor, correlation . between

, lengths of mother- and daughter-

4>oiid» 185-1 87.

Lexis, W.
,
use of term “ precision,”

1 44 . ,.Kefs.
,

Theorie der Massetf-

ewcheinungen, 273 ;
Ahhandlungen

yar Theorie der Bem/kerwigs- und
Moralstatdstik, 273, 361.

Linearity of regression, test for, 205-

206, 352.

Lipps, G. F., refs., measures of

dependence (association, correla-

tion, contingency, ete.7? 40;
Fechner’s .Kollektivmasslehre, 129,

360.

Little, W., data as to agricultural

labourers’ earnings cited from, 137.

Lobelia, application of theory of

sampling to certain data, 269-270,

272.

Logarithmic Increase of population/*

125-126
;
logarithmic mode, 128.

Macalister, Sir Donald1

? ref., law
of geometric mean, 130, 314.

Macdonell, W. K., data cited from,

84, 90. v
Marriage-rate and trade, correlation

of movements, 199-201.

p- Maxwell, Clerk*, use of word “ sta-

tistical,” 4.

Mean, arithmetic, generally, 108-116;

def.
,
108-109

;
nature of, 109 ;

cal-

culation- of, for a grouped distribu-

tion, 1(MM13 ;
influence of group-

ing, 113-114, 115, 116
;

position

relatively to mode and median,121-

122 ;
diagrams, 113, 114 ;

sum of

deviations from, is zero, 114
;

of

series compounded of others, 115 ;

of srtn or difference, 115-116 ;
com-

parison with median, 119; sum -

mary comparison with median and
mode, mean is the best for all

general purposes, 122-123
;
weight-

ing of, 220-225
;
of binomial series,

299 ; standard error of, 344-350.

Mean deviation. See Deviation, mean.
error, 144. See Error, standard

;

Deviation, standard.
—— geometric, 108

;
generally,

123-128; def., 123; calculation,

124 ;
less than arithmetic mean,

123 ;
difference from arithmetic

mean in terms of dispersion, (qu. 8)

156 ;
of series compounded of

others, 124 ;
of series of ratios or

products, 124 ; in estimating inter-

censal populations, 125-126 ; con-

N -
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venienee for index-numbers, 128™
* 127 ;

use on ground that deviations

-vary with absolute magnitude,

127-128
;
weighting of, 225.

®

Mean harmonic, 108; generally, 128-

129; def., 128; calculation, 128;

, is less than arithmetic and geo-

metric means, 129 ;
difference from

arithmetic mean in terms of dis-

persion, (qu. 9) 156 ;
use in averag-

: ing prices or index-numbers, 129
;

in theory of sampling, when
numbers in samples vary, 26-1-265.

square error, 144.
— — weighted, 220-225.; def., 220

difference between weighted and
unweighted means, 221-223

;
ap

~ plication of weighting to correction

of death-rates, etc.
,
for age and sex-

distribution, 223-225 ; refs., 226.

Median, ?OS
;

generally, 116-120;
def., 116 ;

indeterminate in certain

cases, 116-117
;
unsuitod to dm-

<t)ntinuous observations and small

series, 116-117; calculation of,

117; graphical determination of,

118
;
comparison with arithmetic

mean, 119; advantages in special

cases, 119-120; slight influence of-

outlying values oh, 120
;
position

relatively© mean and mode, ftf-

122, diagrams, 113, 114 ;Weighting
of, 225 ; standard error of, 337-341

.

Meitzen, P. A., refs., ^esckichte,

Theoricund TechniJc der Statistik, 6.

M endelian breeding experiments as

illustrations, 37, 3.8, 128, 264-265,

267-268; refs.
,
fluctuations ofeamp-

ling in, 273.

Methods, statistical, purport of, 3-5,

def. 5.

Mice, numbers in litters, harmonic
mean,* 128-129; proportions of

: albinos in litters, fluctuations com-
pared withjtheory ofsampling, 264-

265,

Milton, John, use of word “statist,”

,h
_

Mode, 10S
;
generally, 120-12$

;
def.,

120
;

approximate determination,

from mean and median, 121-122

;

diagrams showing
,
position re-

datively to mean and median, 113,

114; logarithmic or geometric mode,
128

;
weighting of, 225 ;

refs., 130.

Modulus, as measure ' of dispersion,

STATISTICS* : I

'

~0

144 ;
origin from nfirinal curve.

304. a
Mold, Robert von refs. Ge^ehic/Ue

und Litemtvr der StMitswissen*

schajteui 5. .
.

Moment, iirsfc^ def., 110 ;
second and

general, def., 135; calculation of

moments (ref.), 15*1.

Mo<»rc, JL Brantley, data cited from,

,90, 161. Ref., inheritance of fer-

tility and fecundity, 208, 226.

Mortality. See Death- rates.

Movements, correlation of, in two
fl

variables* methods, 197-201# rri's.,

208.

Negative classes and attributes, 10.

j

Newsholme, A., refs., birth-rates, cor-

rection for age- distribution, etc.,

226 ;
Vital Statistics, 359.

Nixon, J. W., refs.
,
experimental test

of normal law, 314.

Normal curve of errors
;
deduction

from binomial series, 301-382

;

value of central, ordinate, 304;
table of ordinates, 303 ;

mean
deviation and modulus, 304 ;

comparison with binomial series

for moderate value of %, 304-305
;

outline of more general methods
of deduction, 305-307

; fitting to
* a given distribution, 307-308; the

table of areas, 310, - and its use,

309-310; quartile deviation and
probable error, 310-311; numerical*
examples of use of tables, 311-313;
normality in* fluctuations of samp-
ling of the mean, 346-847 * Refs.,

general, 314
;

dissection of com-
pound curve, 315 ;

tables, 358-359.
For normal correlation, see Correla-

tion, normal.

Norton, J. P., data cited from,. 182.

-Ref*
,
Statistical Studies m the -Mew

;
York Money Market

,
208.

Order, of a class, 10 ; of generalised

correlations,regressions, deviations

,

and standard deviations,' ‘283-284.

Palorave, Sir R, H. L, Dictionary

of Political Economy, 6. r
Partfco, Vt, refs,, Goars $economic

politique

,

105.

Partial association. See Association,
partial. -

, ,

*
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Partial correlation. See Correlation?

partial.

Pauperism,- in England and Wales,
table,

;
diagrams, 92, 118 ;

cal-

culation of mean, 111 ;
of median,

117, lt8 ; means, medians, and
modes for other years, 122

;
stand-

ard-deviation, 138-140
;

mean
deviation, 145 - 146 ;

quartiles,

14.8
;
percentiles, 151-152,

——
- correlation with out-relief, 182-

185 ; with earnings and out-relief,

177-181, (qu. 2) 189, 239-241, 245-
247 ;

with out-relief, proportion of

agefl, etc. , 192-195,241-245.
Pearl,"Raymond, normal distribution

of number of seeds in Nelum-

Mum, 306; Ref., probable errors,

355.

Pearson, Karl, contingency, 63, 65 ;

mode, 120 ;
standard-deviation,

144 ;
coefficient of variation, 149 ;

skewness, 149; inheritance of

fertility, 195 ; spurious correlation

between indices, 215 ; binomial

apparatus, 299 ;
deduction of nor-

mal curve, 306; data cited from,
-

70, 78, 90, 96, 122, 160, 161.

Refs., correlation of characters not
quantitatively , measurable, 40,

*833
;

contingency, etc., 72-73,

333 ;
frequency curves, 105, 13&

154, 273, 289, 314, 315? 354 ;
bi-

nomial distribution and machine,

314 ; bypergeometrical series, 289 ;

dissection of compound normal
curve, 315; calculation of moments,
225

;
general methods of curve-

fitting, 209
;
testing fit of theoreti-

cal to actual distribution, 815 ;

correlation and correlation ratio,

188, 209, 225, 252, 333 ;
fitting of

principal axes and planes, 209, 333 ;

correlation between indices 226; in-

heritance of fertility, 226; weighted
mean, reproductive selection, 226

;

probable errors, 355 ;
tables for

statisticians, 358.

Peas, applications of theory of

sampling to experiments in cross-

ing, 267-268.

Pecten, correlation between two
diameters of shell, 158; consents,
(qu. 3) 189.

Percentage, standard error of, 256-

^ 257 ;
when numbers in samples

1 »
vifcy, 264-265. See also Sampling
of attributes. »

"

Percentiles, 150-153 ; def., 150 ;
de-

* termination, 151-152 ; advantages,
and disadvantages* 152-153

; use
for unmeasured characters, 152-

153, refs., 333; standard errors

of, 337-341
;

correlation between
errors of sampling in, 341-342 ;

’

refs., 154.

Perozzo, L., ref., applications of

theory of probability to correlation

of ages at marriage, 314.

Petals of Ranunculus btilboms, fre-

quency of, 102 ;
unsuitability of

median in case of such a distribu-

tion, 117.

Peters, J., rtfs.
,
multiplication tabky

358..
Petty, Sir W., refs., Economic

Writings, 6.

.Poincare, H., refs., Calcul des pro-

babiliUs, 361.

Poisson* S. D., refs. , sex-ratio, 373 ;

Recherches sur la probability des

jugements, 273, 361.

Poppies, stigmatic rays on, frequency,

78; unsuitability of median in

such a distribution, 116.

Population, estimation of, between
t censuses, 125-126; refs., 130, 253.

j

Positiveglasses and attributes, def.

,

10 ;
number of positive classes, 13;

I sufficiency of, for tabulation, 18 ;

expression of other frequencies, in

terms of, 13-14
Poynfcing, J.. H., eorrelatioh'of fluc-

tuations, 201
;
refs., 208.

Precision, 144, 257, 304.

Prices, index-numbers of, 126; use of

geometric mean, 126 ;
of harmonic

mean, 129; refs., 130-131.

Principal axes, in correlation, 321 -

322
;

ref., 333.

QuABTILE deviation. See Quartiles.

Quartiles,quartile deviation and semi-

interquartile range, 134; generally,

147-149 ;
dels., 147 ;

determina-

tion, 147-148
;

ratio of q.d. to

standard deviation, 148, 310 ;
ad-

.

vantages of q.d. as a measure of

dispersion, 148-149
;
difference be-

tween deviations of quartiles from
median as measure of skewness,

j
149-150; ratio of q.d. to median as
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• •
measure of relative dispersion *149

;

«q,d. of normal curve, 310; standard

. errors, 337-341, 341-343. %
Quetelet, L. A. JM refs.

,
LeMres swr

la iheorie des probabilites, 272, 361

.

Random sampling, in sense of simple

sampling, 289.

Range, unsuitability of, as a measure
of dispersion, 133.

Ranks, 143, 153
;
methods of corre-

lation based on (refs. ) , 333

.

Ranunculus, frequency of petals,102 ;

unsuitability of median for such
distributions, 117.

Registrar-Gen oral: correction ofdeath-

rates, 224, refs., 226 ;
estimates of

population, refs., 13Or, data cited

from Reports, 32-33, 52-53, 77,

98, 163, 197-199, 199-201, 222,

263,283*284,235-286.
Regressions, generally, 175-177; def.,

175 ;
total and partial, 233 ;

stan-

dard errors of, 352 ; non-linear,

201-202, 205-206, 352, refs., 208-
209.

Relative dispersion, 149.

Reserves and discounts -in American
banks, correlation, 162; diagram,
facing 166.

Rhind, A., ref., tables for comptt*
ing probaffle errors, 355, %

r
>9.

Rutherford, E., ref., law of small
chances, 273.

#

Sampling, theory of, generally, 254-
355; the problem, 254-256; refs.,

273/289, 313-315, 354-355..
Sampling of attributes : conditions
assumed in simple sampling, 255-

256, 259-262 ; random in sense of

simple sampling, 289 ;
standard-

deviation of nlimber or proportion of
successes in n events, 256-257, 299-
300

;
examples from artificial chance,

258-259
;
application to sex-ratio,

262-264
;
when numbers in samples

1 vary, 264-265
;
when chance of

successor failure is small, 265-266
;

standard error def., 267 ;
compar-

ing a sample with theory, 267-268 ;

comparing one sample with another
independent therefrom, 268-271 ;

comparing one sample with another
combined with it, 271-272

;
limita-

tions to: interpretation of standard

error when n is small* inverse in-

terpretation, 276-279
;
limits as a

measure of untrustworthjnesf, 279 -
0

281 ;
effect of removing conditions

of simple sampling, 281-289
;
sam-

pling from limited material, 287 :

binomial > distribution, 291-300
;

normal curve, 300-31 3 ;
normal

•correlation, 317-334. See also

Binomial series ;
Hypergcometrical

series
;
Normal curve

;
Correlation,

normal.

Sampling of variables, conditions as-

sumed in simple sampling. 335-

837 ;
standard errors of percentiles

(median and quartiles), 837-341;
' dependence'' of standard error of

median on the form of the distribu-

tion, 338-340
;
of difference between

two .percentiles, 341-343
;
of arith -

metic mean
,
344-350 ; of difference

between two means, 345-346
;
nor-

mality of distribution of mean,
346-847 ;

effect of removing con-

ditions of ' simple sampling on
standard error of mean, 347-850

;

standard error of standard-devia-

tion and coefficient of variation,

351 ;
of coefficients of , correlation

and regression, 852 ; of correlation-

ratio and test for linearity of re- -

• gressipn, 352.

Saunders, Miss E. E., data cited

from, 37.

Scheibner, W.
,

difference between*
arithmetic and geometric, arith-

metic and hatmonic means, (qu. 8

and qu. 9) 156.

Scripture, E. W.
,

use of word
“ statistics,” 3.

Semi-interquartile range. See Quar-
tiles.

Sex-ratio of births : correlation with
total births, 163, 175, 207 /diagram,

176 ;
constants, (qu. 3) 189;

application of the theory of samp-
ling to, 862-264, (qu. 7) 27>5, (qu.

1 , 2) 289, refs.
, 273 ;

standard

error of7 ratio of male to female
births, (qu. 11) 275,

Shakespeare, W.
,

use of wold
“ statist,” f •

Sheppard, W.- E., correction of the
standard-deviation for grouping,

212, 307 ; theorem on correlation

of a normal distribution grouped
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round Medians, (qu. 4) 334 ;

normal curve tables, 337 ; standard% errors of percentiles, 344. Refs.,

calculation and correction of

moments. 225 ;
normal curve

and correlation, theory of samp-
linn;, 314, 333, 355 ;

tables of'

normal function and its integral,

359.

Significant differences, 266.

Sinclair, Sir John, use of words
£ fc

statistics,
” £

‘ statistical, ” 2.

Skew or asymmetrical frequency-
m

distributions, 90-102. See also

.Frequency-distributions,

Skewness of frequency-distributions,

107 ;
measures of, 149-150.

Slutsky, E., refs., fit of regression

lines, 209.

Snow, E. C., refs., estimates of popu-
lation, 130, 253 ;

lines and planes

of closest fit, 209.

Southey, Robert, cited re Cosiir’s

•Names of the Roman Catholics,

etc., 100.

Soper, H. E., refs., probable error of

correlation coefficient, 355 ; , of bi-

serial expression for correlation

coefficient, 355 ;
tables of ex-

ponential binomial limit, 273.

. Spearman, G. ,
effect of errors of

observation on the standard-devia-

tion and coefficient of correlation,

213-214. Refs., effect of errors of

JP® observation, 225, 333
;
rank method

of correlation, 333.

Standard-deviation. « See Deviation,

standard.

Statist, occurrence of the word in

Shakespeare and in Milton, 1.

Statistical, introduction and develop-

ment in the meaning of the word,

1-5
;

S. Account of Scotland, 2 ;

Royal S. Society, 3 ;
methods, pur-

• port of, 3-5, def. 5.

Statistics, introduction and develop-

ment in meaning of word, l-5‘;

def., 5 ;
theory of, def., 5.

9
Statures of males in U.K., tables, 88,

90 ;
diagrams, 89, 91 ;

calculation

* of mean, 112 ;
means and medians,

11 (qu, 1) 131 ;
ftandard-devia-

tion, 141
;
percentiles, 153 ^stan-

dard-deviation, mean deviation and

, qnartiles, (qu. 1) 155 ;
distribution

• fitted to normal curve, 305-306
;

30?-308, diagram, 306; standard
errors of mean and median, of fi*st

f
nd ninth deciles, 341, 343, 344-

45, of standard - deviation and
semi-interquartile range, (qu. 5)

. 355.

Statures, correlation of, for father and
son, 160; diagrams, facing 166,

174; constants, (qu. 3) 1S9; test-

ing for normality, 322"$28 ; for

isotropy, 329-331
;

diagram of

diagonal distribution, 325, of fitted

contour lilies, 327.

Stevenson, T. H. 0., refs., birth-

rates, correction of, -for age- dis-

tribution, 226.

Stigmatic rays on poppies, frequency,

78 ;
unsuitability of median fcr

such distributions, 116.

Stirling, James,' expression for fac-

torials of large numberr. 304.

“Student” (pseudonym), refs. ,
law

of. small chances, 278; probable

errors, 355. r\

Symmetrical frequency-distributions,

87-90, See also Frequency-dis-

tributions
;
Normal curve.

Symons, G. J.
,

use of word “sta-

tistics ” in British Rainfall, 3.

•. 't

Tabulation, of statistics, of attri-

butes, 11-14,
.
87 ;

of a frequency-

distribution, 81-83 i of a correlation
' table, ?64.

Tatham, John, refs.
,

correction of

death-rates, 226.

Tho^dike, E. L., refs., methods
.
of

measuring correlation, 833 ;
Theory

of Mental and Social Measurements,
361,

Todhunter, I., refs,, History - of
the Mathematical . Theory of Prob-

ability, 6.

Trachtenberg, M. I., refs., property

of median, 154.

Type of array, def;, 164.

Ultimate classes and frequencies,

def’.; 12 ; sufficiency of, for tabula-

tion, 12 13.

Universe, def., 17; specification of,

17, 18,

U-shaped frequency distributions,

102-105.
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Value, annual, of dwelling-houses,

4sable, 83
;
median, (qu. 4) 1 31 ;

quartiles, (qu. 3) 155. «—- of estates, in 1715, table, 100*;-

• diagram, 101.

Variables, theory of, generally, 75-
'

253 ;
def,., 7, 75,

'

Variates, def., 150.

Variation, coefficient of, 149; stan-

dard e^ror of, 351-352.

Venn, John, refs., Logic of Chance,.

sex- ratio, 273, 301.

/•Vm’soihaelieit, E., relative dispersion,

149. Befs.
,
measure of relative dis-

persion, 154.

Vigor, H. D., data cited from, 163.

Kefs. , sex-ratioy ‘273.
'

" *

Wages, of agricultural labourers, see

Earnings.

Warner, F.p refs., study of defects in

school-children, notation for sta-

tistics of attributes, 15.

:

Waters, A. G.,
'

refs.
,

estimating
intercensal populations, 130.

Weather and crops, correlation, 196-

.

197.
Weighted mean, see Mean, weighted

;

also Mean, geometric; Median
;

Mode.
Weights of males in U. K.

}
table, 9#

diagram,
;
mean, median, and

mode, (qu. 2)131 ;
standard-devia-

tion, mean deviation and quartiles,

(qu. 2)155. *

Weldon, W. F. R.
,

dice-throwing
experiments, 258-259.

Westergaard, H.
,

refs., fItmrie der

StatMik
, 6, 273, 361.

Whittaker, Lucy, refs., lug of#small 4

numbers, 273.

Willcox, W. P., citation of Bielfeld,

1 .

#

Wood, Frances, refs., index correla-

tions, 226, 252.

Young, Allyn A., refs., age sta-

tistics, 105.

Yule, G. U., use of term character-

istic lines (lines of regression^ 177 ;

m
,

problem of pauperism, 192 ;
data

cited from, 78, 93, 122, 140, 163,

1 85, facing 1 86, 259. Kefs.
,
history

of words * * statistics,
” ‘ c

statistical,
”

5; attributes, association, consist-

ence, etc., 15, *23, 39, 40, 57

;

isotropy, influence of bias in sta-

tistics of qualities, 73 ;
correlation

, «

188, 226, 252 ; correlation between
indices, 226 ;

frequency - curve®,

314
;
probable errors, 355

;
pauper-

ism, 130, 208, 253; birth- rates,

208, 226 ;
sex-ratio, 273 ; fluctua-

tions of sampling in Mendelian
ratios, 273.

Z$mmermann, E. -A. W.
,
use of the

words “statistics,” “statistical,”

in English, 1.

H,, multiplication table, 358. '

Zizek, F., refs.., Die siatdstischen MiU
iehverthe and translation, 129. ;
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